¢ IS COMPLETE

Let 1 < p < oo, and recall the definition of the metric space (*:

Forl <p<oo, = {sequences a = (ay,),2, in R such that Z la,|P < oo} ;
n=1
whereas (> consists of all those sequences a = (a,);2, such that sup,cy |a,| < co. We
defined the p-norm as the function || - ||,: /£ — [0, 00), given by

[e%s) l/p
la|l, = (Z |an|p> , for1 < p < oo,
n=1

and ||al|oc = sup,,cy |a,|- In class, we showed that the function d,: % x (7 — [0, c0) given
by d,(a,b) = ||la — b||, is actually a metric. We now proceed to show that (¢*,d,) is a
complete metric space for 1 < p < oo. For convenience, we will work with the case p < oo,
as the case p = oo requires slightly different language (although the same ideas apply).

Suppose that a',a? a?, ... is a Cauchy sequence in /7. Note, each term a* in the se-

quence is a point in 7, and so is itself a sequence:

a® = (af,ak, db,. . ).

Now, to say that (a*);° , is a Cauchy sequence in ¢” is precisely to say that
Ve > 03K € Ns.t. Vk,m > K, [|a" —a™|, < e.

That is, for given € > 0 and sufficiently large k£, m, we have
o0
k k
D laf —ay = [la* —a™|p < €.
n=1

Now, the above series has all non-negative terms, and hence is an upper bound for any
fixed term in the series. That is to say, for fixed ny € N,

%)
jah, —ap| <> laf —apP <€,
n=1

and so we see that the sequence (af )72, is a Cauchy sequence in R. But we know that R
is a complete metric space, and thus there is a limit a,,, € R to this sequence. This holds
for each ny € N. The following diagram illustrates what’s going on.

1
a2
B = B & ad B
al

L

ap Gz as a4
So, we have shown that, in this /?-Cauchy sequence of horizontal sequences, each vertical
sequence actually converges. Hence, there is a sequence a = (ay, as, as, a4, . ..) to which

“a converges” in a vague sense. The sense is the “point-wise convergence” along vertical
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lines in the above diagram. To be more precise, recall that a sequence a is a function
a: N — R, where we customarily write a(n) = a,. What we have shown is that, if
(a',a? a®, ...)is a Cauchy sequence of such * functions, then there is a functiona: N — R

such that a* converges to a point-wise; i.e. a*(n) — a(n) for each n € N.

Now, our goal is to find a point b € 7 such that a* — b as k — oo in the sense of ¢7;
that is, such that ||a* — b||, — 0 as k — oo. The putative choice for this b is the sequence a
given above. In order to show that one works, we need to show first that it is actually an
P sequence, and second that a* converges to a in /7 sense, not just point-wise.

To do this, it is convenient to first pass to a family of subsequences of the (al), as fol—
lows. Since (af)$°, converges to a;, we can choose k; so that for k > k;, |a1 — ] < 2
Having done so, and knowing that a5 — a,, we can choose a larger k» so that for k > ky,
we have |a} — a;| < § and |a§ — a,| < ;. Continuing this way iteratively, we can find an
increasing sequence of integers k; < ky < k3 < --- such that

foreach j €N, |a¥ —a,| <27 forn=1,2,...,5and k > k;. (1)
In particular, we have law — a,| < 277 for j > n. That gives us the following.
Lemma 1. The sequence a = (a,,)S., of point-wise limits of (a*)2, is in (.

Proof. Fix N € N, and recall that the finite-dimensional versions of the /’-norms,

1/p
[(ar, ..., an)llp = <Z !an!”)

also satisfy the triangle inequality (i.e. d,(x,y) = ||x — y/||, is a metric on R"). Hence, we
can estimate the initial-segment of NV terms of a as follows:

an = (an — GZN) + asza

N 1/p N 1/p N 1/p
(z\an\p) g(zran—aw) +<z\a:zw|p) | 2
n=1 n=1 n=1

Now, the last term in Equation 2 is bounded by the actual /’-norm of the whole sequence
a®~; that is, we can tack on the infinitely many more terms,

N 1/p oo 1/p
(Zla’mp) < (Z|a2N|p) — [|a"],.
n=1 n=1

Recall that (a*)32, is a Cauchy sequence in the metric space ¢*. We have proved that any
Cauchy sequence in a metric space is bounded. Thus, there is a constant R independent of
N such that ||a*¥ ||, < R. Combining this with Equation 1, we can therefore estimate the
right-hand-side of Equation 2 by

N 1/p N 1/p
(Z |an|p> < (Z(TW’) +R=(N 2—NP)1/” + R.

n=1

and so
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Finally, the term (N 2_Np)1/ P = NP2~V converges to 0 as N — oo (remember your
calculus!), and hence this sequence is also bounded by some constant S. In total, then,
we have

N 1/p
(Z|an|p> <R+ Sforall N € N.
n=1

In other words, >V |a,|? < (R + S)?. The constant on the right does not depend on N;
it is an upper bound for the increasing sequence of partial sums of the series >, |a,|P =
|al/?. Thus, we have ||a|, < R+ S, and so a € ¢”. O

So, we have shown that the putative limit a (the point-wise limit of the sequence (a*)? ,
of points in ¢?) is actually an element of the metric space /7. But we have yet to show that
it is the limit of the sequence (a*) in ¢?. That somewhat involved proof now follows.

Proposition 2. Let (a*)°, be a Cauchy sequence in (7, and let a be its point-wise limit (which is
in (°, by Lemma 1). Then ||a* — a||, — 0as k — oc.

Proof. Let ¢ > 0. Lemma 1 shows that a € (7, which means that ) ° , |a,|? < co. Hence,
by the Cauchy criterion, there is an N; € N so that

o0
Z |a,|P < €.

n=N1

In addition, we know that (a* )72, is fP-Cauchy, so there is N, so that, whenever k, m > Ny,
|a* —a™||, < e. Letting N = max{Nj, Ny}, we therefore have

> lan” < ¢ and [a¥ —a|, <€ Vk > N. 3)

n=N

Now, the sequence a” is in 7, and so we can apply the Cauchy criterion again: select N’
large enough so that

o0
Z la P < €P. 4)
n=N"'
Note, we can always increase N’ and still maintain this estimate, so we are free to chose
N’ > N.

We now use the constant N’ we defined above in the bounds we will need later. Since
a¥ — a, for each fixed n, we can choose K so that |af — a;| < ¢ /N’ for k > K. Likewise,
we can choose K3 so that |af — ay| < /N’ for k > K,. Continuing this way for N’ steps,
we can take K’ = max{ K}, Ks, ..., Ky} and then we have

P
lak — a,| <%, fork> Kandn < N'. )

n_

For good measure, we will also (increasing it if necessary) make sure that X > N’. Now,
for any k > K, break up b = a* — a as follows:

(bn)?f:l = (bn)nN;II (bn)zo:N/-
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(To be a little more pedantic, we are expressing b,, = z,, + y,, where z,, = b, whenn < N’
and = 0 whenn > N/, and y,, = 0 when n < N’ and = b, when n > N'.) The triangle
inequality for the p-norm then gives

N’'—1 1/p 0o 1/p
o — all, < (z \a:z—an\p) N (z m;z—am) | 6
n=1

n=N’'
Equation 5 shows that, for k > K, the first term here is

’_ 1/p ’_ 1/p
N'—1 . , N1 N1\ /P
Z |an_an| < ﬁ = N € < €.

n=1 n=1

For the second term in Equation 6, we use the triangle inequality for the ¢’-norm restricted
to the range n > N’ to get

o0 1/p 00 1/p 00 1/p
jay —a, P | < jagl” ]+ |anl” | -
(Srt-ar) s (Swr) (S )

n=N"' n=N’' n=N"'
Since N’ > N, Equation 3 shows that the second term here is < €. So, summing up the
last two estimates, we have

s 1/p
la* — al|, < 2¢+ (Z Iaﬁlp) ; (7)

n=N'
whenever k£ > K. So we need only show this final term is small. Here we make one more

decomposition: a¥ = a¥ — Y + alf, and so once again applying the triangle inequality,

0o 1/p 00 1/p 0o 1/p
(z\aw) s(zmz—aw) +(zramp) |

n=N’ n=N’ n=N’'
The first of these terms is a sum of non-negative terms over n > N’, and so it is bounded
above by the sum over n > 1 which is equal to ||a* — a||,, which is < € by Equation 3
(since kK > K > N’ > N). And the second term is also < ¢, by Equation 4. Whence, the
last term in Equation 7 is also < 2¢, and so we have shown that

Ve > 0, 3K € N such that Vk > K ||a* — al|, < 4e.

Of course, we should have been more clever and chosen all our constants in terms of €/4
to get a clean ¢ in the end, but such tidying is not really necessary; 4e is also arbitrarily
small, and so we have shown that (a*)?°, does converge to a in ¢P. This concludes the
proof that /7 is complete. Whew! O

Let us conclude by remarking that a very similar (though somewhat simpler) proof
works for p = oo; the details are left to the reader.
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