
� 

� | | 

THE WEIERSTRASS PATHOLOGICAL FUNCTION


Until Weierstrass published his shocking paper in 1872, most of the mathematical world 
(including luminaries like Gauss) believed that a continuous function could only fail to 
be differentiable at some collection of isolated points. In fact, it turns out that “most” 
continuous functions are non-differentiable at all points. (To understand what this state­
ment could mean, you should take courses in topology and measure theory.) However, 
Weierstrass was not, in fact, the first to construct such a pathological function. He was 
preceded by Bolzano (in 1830), Cell’erier (also 1830), and Riemann (1862). None of the 
others published their work (indeed, their examples were not discovered in their notes 
until after their deaths). 

All known examples of non-differentiable continuous functions are constructed in a 
similar fashion to the following example – they are limits of functions that oscillate more 
and more on small scales, but with higher-frequency oscillations being damped quickly. 
The example we give here is a faithful reproduction of Weierstrass’s original 1872 proof. 
It is somewhat more complicated than the example given as Theorem 7.18 in Rudin, but 
is superior in at least one important way, as explained in Remark 2. 

Theorem 1. Let 0 < a < 1, and choose a positive odd integer b large enough that 
ab

π 
−1 < 

3
2 (i.e. 

ab > 1 + 3
2 
π ). For example, take a = 1

2 and b = 11. Define the function W : R → R by 
∞

W (x) = a n cos(bnπx). 
n=0 

Then W is uniformly continuous on R, but is differentiable at no point. �NRemark 2. Notice that the partial sums WN (x) = n=0 a
n cos(bnπx) are all C∞ functions. 

As the following proof shows, these partial sums converge uniformly to W , and so we 
have an example here of a sequence of C∞ functions that converge uniformly to a nowhere-
differentiable function. This is the most dramatic demonstration that differentiability is 
not preserved under uniform convergence! The example of Theorem 7.18 in Rudin, while 
similar in spirit, constructs a function as a uniformly convergent series of functions that 
have sharp cusps on ever-denser sets, not achieving the same demonstration. Indeed, 
from Rudin’s proof one might be left with the impression that the construction depends 
fundamentally on the non-smooth points in the approximating functions. As the proof 
below shows, this has nothing to do with the reason the limit function is non-smooth. The 
real reason is oscillation on small scales, and this can be achieved with smooth oscillations 
of high frequency. 

Proof. First note that, since cos(bnπx) ≤ 1 for all x, we have the terms in the summation 
are bounded by an, and n a

n is absolutely convergent. Therefore, by the Weierstrass M -
test (Theorem 7.10 in Rudin), the sum W (x) converges uniformly. Since the partial sums 
are all C∞ (as explained in Remark 2), they are continuous, and so their uniform limit W 
is continuous on R by Theorem 7.12 in Rudin. 

We will now show that, at any arbitrary point x0 ∈ R, W is not differentiable at x0. The 
strategy is as follows: we construct two sequences (x+ ) and (x− ), such that x+ x0 from m m m →

1 



2 

the right and xm
− x0 from the left, and such that the different quotients → 

W (xm) − W (x0) 

m − x0
±

±
±
mD
 W =


x


do not have the same limit. In fact, we will show that
 diverges to ∞ as m → ∞, 
and that the two have opposite signs. So on small scales, f oscillates infinitely-often with 

±
mD
 W
|
 |


infinite slope! Figure 1 pictures this function.


FIGURE 1. The graph of the Weiestrass function W . 

Fix x0 ∈ R. For each m ∈ N, we can choose an integer αm ∈ Z such that 

bm x0 = αm + �m 

where �m ∈ [−
2
1 , 

2
1 ). (αm is either �bmx0� or �bmx0� − 1, depending whether the fractional 

part of bmx0 is ≤ 1 or > 1 .) Now, define 
2 2 

±xm 
αm ± 1 bmx0 − �m ± 1

= x0 + 
±1 − �m 

=≡ 
bm bm bm 

.


Since


±

±

±

∞

±

±
±

≤ 2, and b ≥ 3, we see that xm − x0 converges to 0. Notice also from the 
< x0 < x+ . We now examine the difference quotients, 

W (x ) − W (x0) � cos(bnπx ) − cos(bnπx0)m m
m

m − x0 m − x0 

−
| ± 1 − �m

signs that xm 

|

m

nD
 W =
 = a
 .

x
 x

n=0 
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(We can subtract the sums because they converge, by the limit theorems.) We now break 
up the sum into two parts, with n ranging between 0 and m − 1, and from m on up. 

m�−1
cos(bnπx± ) − cos(bnπx0) 

∞
cos(bnπx±� ) − cos(bnπx0)

D±W = a n m + a n m .m x±m − x0 x±m − x0 n=0 n=m 

Refer to these two sums as S1
± + S2

±. First, we bound the first one. Rewriting the terms as 

a n cos(bnπx±m) − cos(bnπx0)
= (ab)nπ m , 

cos(bnπx± ) − cos(bnπx0) 
x± bnπx±m − x0 m − bnπx0 

we see this is of the form (ab)nπ cos(A)−cos(B) . By the mean value theorem, there is a point 
A−B 

C between A and B where cos(A)−cos(B) = − sin C, and the absolute value is therefore ≤ 1. 
Hence, we have 

A−B 

m−1
(ab)m − 1 (ab)m 

|S1
±| ≤ (ab)nπ = π 

ab − 1 
< π 

ab − 1 
. (1) 

n=0 

Turning now to the second term, we reindex k = n − m, 

S± = 
∞

a 
cos(bk+mπx± ) − cos(bk+mπx0) 

. (2)k+m m
2 x±m − x0

k=0 

The argument of cos in the first term is 

cos(bk+mπx± ) = cos bkπ bm αm ± 1 
= cos 

� 
bk(αm ± 1)π 

� 
.m · 

bm 

Since bk is an odd integer and α ± 1 is an integer, this number is ±1, with the sign deter­
mined by the parity of αm ± 1; that is, 

cos(bk+mπx± ) = (−1)αm±1 = −(−1)αm .m

The argument of cos in the second term in Equation 2 is 

bk+mπx0 = bk+mπ
αm + �m 

= bkπ(αm + �m). 
bm 

We now use that summation formula for cosine, cos(A+B) = cos(A) cos(B)−sin(A) sin(B), 
so that 

cos(bk+mπx0) = cos(bkαmπ) cos(bk�mπ) − sin(bkαmπ) sin(bk�mπ). 

Since bkαm ∈ Z, the second term is 0. Also, we have cos(bkαmπ) = (−1)αm . So 

cos(bk+mπx0) = (−1)α cos(bk�mπ).m 

Combining this with Equation 2, we have 

S2
± = 

∞

a k+m −(−1)αm − (−1)αm cos(bk�mπ) 
. (3) 

x±m − x0
k=0 

Using the fact that x± )/bm, we can now simplify Equation 3 to read m − x0 = (±1 − �m

∞
k 1 + cos(bk�mπ)

S± = (ab)m(−1)αm a
�m � 1 

. (4)2 

k=0 
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We now consider the two sums, S
+2 separately. From Equation 4 we have
and S−2
∞

(−1)αm 

(ab)m 

1 + cos(bk�mπ)kS
+2 = a
 .

�m − 1 

k=0 

1 
2
, and since cos(bk�mSince �m π) ≥ −1, all the terms in this sum are ≤ 0. Hence, the 

negative of this summation has non-negative terms, and so is bounded below by the k = 0 
≤


term:


−

(−1)αm 

(ab)m 
S
+2 ≥


1 + cos(�mπ) 
.


1 − �m 
π π ], its cosine is ≥ 0, and the numerator is 

1−�m 

≥ 1. Hence, we have 

11 ≥

1+ 1 

2 

1 .
Since �m Since �mπ ∈ (−
> −

Now we consider S−2

,
 ,

2 2 2

−

(−1)αm 

(ab)m 
S
+2 ≥


1 2

(5)
= .


1 +
1 
2

3


. This time Equation 4 yields that 
∞

S−2 
(−1)αm 1 + cos(bk�mπ) 

=

(ab)m em + 1 

k=0 

is a sum of non-negative terms, and precisely the same analysis as above demonstrates 
that 

(−1)αm 2 
. (6)2S−

We’re now ready to finish the proof. For we have, combining Equations 1 and 5, 

≥

(ab)m 3


+ 
m

+
1 + (ab)−mS+

2(ab)−m D f = (ab)−mS ,


where

π
 2
−(−1)αm (ab)−mS+

1
+
2|(ab)−mS | ≤
 ≥
,
 .


ab − 1
= (ab)−mSj

± for j = 1, 2; then 
3


To ease notation, let Tj
± 

π
 2
−(−1)αm T|T
+1
+
2| ≤
 ≥
,
 .


ab − 1

is a number (positive or negative) outside the interval 
3


,∈ [
ab

π 
−1 ab

π 
−1 

). By assumption, 

+
1

+
2Thus, T
 ], while T


22 π 
ab−1 
π 

2 , and so (ab)−mD+ 
mf = T
+1 +T
+2 is a number with absolute
(−

value bigger than
<


3
,

3 3
2 In other words, as m → ∞, (ab)−mD f does not tend to 0.
+ .

ab−1
−

3 m

Since (ab)m 

21

→∞ as m →∞, this proves that the right-derivative of f does not exist at x0 

– in absolute value, it blows up to ∞. This is enough to prove theorem 

Note also that a similar analysis shows that 
π 2 

T − (−1)αm T −|
 | ≤
 ≥
,
 .

ab − 1


f also blows up in absolute values as we approach x0


3

Hence D−

m from the left. But the

2and T −

is the function non-differentiable at each point, but approaching from left and right we 
have slopes increasing without bound and with opposite sign. So the function oscillates 
badly on all scales at all points. 

interesting point here is that T
+2 have opposite signs, which means that not only
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