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Let  m and n be positive integers with no common factor. Prove that if
m/n is rational, then m and n are both perfect squares, that is to say 

there exist integers p and q such that m = p 2 and n  = q 2.  (This is proved  
in Proposition 9 of Book X of Euclids Elements).  

Assume
 
m/n is rational.  Then  there exist positive integers M and N  

with no common factor such that m/n  2 = N and so mN =  M/ nM2. 

2 divides m and N2 Claim: M divides n. 

Assume the claim for now. Then 

  2 / m = M m and n = 2  N n/ for   some m/ and n/. 

Substituting we obtain M2 2   m/   N = N2  n/M2 which gives m/ = n/. m/ = n/

divides m and n so m/ = n/ = 1 and we have shown m and n are perfect 
squares. 

Proof of claim: We   show that M2 divides m; the argument that N2 di­
vides n is identical. Write M as a product of primes p1 · · · pr and note that 
no pi divides N . Assume inductively  that 2 p 2

1 · · · pt divides m. Then 

2 M2 m 
p 2 
t  +1

 
p · ·  

 
N2 2 

1  · 2 2 p t p 1 · · · p t 
  Since p 2

t+1 does not divide N

  
we see 

  
m

p  2 
  

, which gives p 2 · · · p 2t+1 1 

 
m. 2 · 2 p t+1

1 · · p t 
The inductive hypothesis

  
 holds when t = 0; the empty 

  
product is 1. Thus, 

  2 · · · 2   2 by induction p1 pr = M divides m.
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Problem 8 from Page 22: Prove that no order can be defined in the complex 
field that turns it into an ordered field. 

Suppose that such an order exists. We know that in any ordered field squares 
are greater than or equal to zero. Since i2 = −1, this means that 0 ≤ −1. 
Thus 

1 = 0 + 1 ≤ −1 + 1 = 0 ≤ 1, 

which implies 0 = 1, a contradiction. 
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Problem 9 from Page 22: suppose z = a + bi and w = c + di. Define z < w if 
a < c, and also if a = c but b < d. Prove that this turns the set of all com­
plex numbers into an ordered set. Does this set have the least-upper-bound 
property? 

Suppose z = a + bi and w = c + di are distinct complex numbers. If 
a  If a = c,= c, then either a > c or a < c, and hence either z < w or z > w. 
then b  = w.= d, since otherwise z In this case, either b < d or b > d, and 
then z > w or z < w. So in either case either z < w or z > w. 

Now suppose x = a + bi, y = c + di, and z = e + fi are complex num­
bers with x < y and y < z. We need to show that x < z. We have a ≤ c, 
since otherwise x > y, and similarly c ≤ e, and so a ≤ e. If a < e, then 
x < z. If a = e, then in fact a = c = e. In this case, since x < y, we must 
then have b < d and similarly d < f , so b < f and again x < z. In either 
case x < z. 

So this relation makes C into an ordered set. This order does not have 
the least-upper-bound property. To see this, consider the purely imaginary 
line, i.e. the set 

L = {a + bi ∈ C|a = 0} 

This set is bounded above by 1. Let z = a + bi be any upper bound for L. 
Then a > 0; indeed, if a ≤ 0, then the complex number w = (b + 1)i satisfies 
z < w and w ∈ L, so z cannot be an upper bound for L. Now consider the 
complex number y = a + (b − 1)i. Clearly y < z. However, since a > 0 y 
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is also an upper bound for L. This shows that for every upper bound on  
L there exists a strictly smaller upper bound, and so C cannot have the  
least-upper-bound property with this ordering.  

Let R be the set of real numbers and suppose f : R → R is a function such  
that for all real numbers x and y the following two equations hold  
(1)f(x + y) = f(x) + f(y)  
(2)f(xy) = f(x)f(y)  

Claim: f(x) = 0 for all x or f(x) = x for all x. 

a 

Setting x = 1 and y = 0 in equation (1) gives 

f(1) = f(1) + f(0) so that f(0) = 0. 

Setting x = y = 1 in equation (2) gives f(1) = f(1)2 . Thus f(1) is equal to 
20 or 1 as we may see by solving the equation x − x = x(1 − x) = 0. 

Remark: If I did not have to answer all parts of the question fully and 
I just wanted to prove the claim as quickly as possible I would proceed by 
noting that f(1) = 0 gives 

f(x) = f(1)f(x) = 0 for all x ∈ R. 

From this moment on I could then assume f(1) = 1. 

b 

By a) we have 
f(0) = 0 = 0f(1). 

Also, 

f(x) + f(−x) = f(x − x) = f(0) = 0 so that f(−x) = −f(x) for all x ∈ R. 

In particular, f(−1) = −f(1). 

Let n ∈ Z and assume that f(n) = nf(1). Then 

f(n + 1) = f(n) + f(1) = nf(1) + f(1) = (n + 1)f(1) 
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and 
f(n − 1) = f(n) + f(−1) = nf(1) − f(1) = (n − 1)f(1). 

By induction f(n) = nf(1) for all n ∈ Z. 

    
n n 

f mf(1) = f f(m) = f(n) = nf(1) 
m m

and so     
n n n 

f = f f(1) = f(1). 
m m m 

Thus f(q) = qf(1) for all q ∈ Q and by a) either f(q) = 0 for all q ∈ Q or 
f(q) = q for all q ∈ Q. 

2Suppose x ≥ 0. Then there exists a y ∈ R such that y = x and 

f(x) = f(y 2) = f(y)2 ≥ 0. 

Thus 

x ≥ y ⇒ x−y ≥ 0 ⇒ f(x)−f(y) = f(x)+f(−y) = f(x−y) ≥ 0 ⇒ f(x) ≥ f(y). 

d 

Suppose f(1) = 0. Given any x ∈ R we can find p, q ∈ Q such that 

p ≤ x ≤ q. 

Then 
0 = f(p) ≤ f(x) ≤ f(q) = 0 ⇒ f(x) = 0. 

Alternatively, we proceed as remarked in a). 

Suppose f(1) = 1. Let x ∈ R and n ∈ N. Then there exist p, q ∈ Q 
such that 

1 1 
x − ≤ p ≤ x ≤ q ≤ x + 

n n 
and so 

1 1 
x − ≤ p = f(p) ≤ f(x) ≤ f(q) = q ≤ x + . 

n n 
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For n,m Z, m = 0∈ 6



So for all x ∈ R and all n ∈ N we have 

1 1 
x − ≤ f(x) ≤ x + 

n n 

which gives f(x) = x for all x ∈ R. 
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