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We define

F=Q={a+V2a,bcQ} CR

We wish to show that F' is a subfield of R. In order to show this, we need
to show that a) 0,1 € F; b) F is closed under addition and multiplication;
and ¢) if x € F and x # 0, then —z € F and 1/z € F. The commuta-
tive, associate, and distributive properties all follow from the corresponding
properties on R.

a), b), and the first half of ¢) are straightforward; we have 0 = 04 0v/2 € F
and 1 =1+ 0v/2 € F. For b), we have

(a+bV2) +(c+dV2)=(a+c)+ (b+d)V2€F

and
(a+bV2)(c+dV2) = (ab+2cd) + (ad + bc)V2 € F.

If £ = a+ by/2, then —x = (—a) + (—b)v/2 € F. So the only fact remaining
to show is that F' is closed under multiplicative inverses.

To prove this, we need the following

Fact: f 0=a+bV/2 € F,thena=0b=0



Proof: Suppose b # 0. Then 2 = —a/b € Q, a contradiction. So we
must have b = 0, and then 0 = a + 0 = a.

Now take z = a + bv/2 € F,  # 0. By the above fact, a — by/2 is also
nonzero, and hence

a? = 20® = (a4 bV2)(a — bV2) # 0

Since the product of non-zero real numbers is non-zero.

So we can define ¢ = a/(a® — 2b?) € Q, d = —b/(a®> — 2b?) € Q, and
y = c+dy2 € F. I claim that zy = 1, so y = 1/x and F contains multi-
plicative inverses. Indeed,

(a +bV2)(a —bV2) = 721’2:1

(a+bV2)(c+dv2) = YY)

2b2

and we are done.
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Problem 11 from page 23.

Let z = a+ bi € C. We wish to show that z = rw, where r > 0 is a
positive real number and w is a complex number with |w| = 1. Suppose
z = 0. Then we can take r = 0 and w = 1. If z # 0, we take r = |z| > 0,
(r > 0 by theorem 1.33(a)) and take w = z/r. Then obviously z = rw, and

z
= |— :—:1
jwl = 12

by theorem 1.33(c). As for uniqueness, r is always determined by z; in-
deed, if z = rw, we must have |z| = |rw| = |r| - |w| = |r| = r, since r > 0.
If z = 0, w is not determined by z, since for any w, rw = Ow = 0 = 2.
However, if z # 0, then r # 0, and then we must have w = z/r. So w is
determined by z so long as z # 0.
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Problem 9 from page 43.
Let X be a metric space and F C X.

a

Let p € E°. By definition, p is an interior point of E, so there exists an
r > 0 such that N,(p) C E. If we can show N,(p) C E° it will follow that
p is an interior point of E°, and thus E° is open. But for any ¢ € N,(p) we
have

Ny—a@p,q)(q) C Ni(p) C E,
which implies ¢ € E°, as required.
(For the above inclusion we use the triangle inequality:
€ Ni_gpg)(q) = d(z,q) <r—d(p,q) = d(z,p) <d(x,q)+d(p,q) <r
= x € N,(p).)

b

E is open <= every point of F is an interior point of £ <— FE C E°.

It is clear that we always have E° C FE (since a neighborhood of a point
contains the point). Hence, E is open if and only if E° = E.

C

Let G C E and suppose G is open. Given p € G, there exists an r > 0 such
that N,(p) C G. Since G C E we have

N:(p) CE
and so p € E°.

d

By definition, € FE° if and only if there exists an r > 0 such that
N,(z) C E. Thus, z ¢ E° if and only if for all » > 0, N,(z) N (X \ E) # 0.

Suppose that for all » > 0, N,.(z) N (X \ E) # (. Then either x € X \ E



or z is a limit point of X \ E, i.e. z € X \ E. Conversely, if x € X \ E,
then either x € X \ E or z is a limit point of X \ £ and in either case
Ny (z) N (X \ E) # 0, for all r > 0.

e, f

No, in both cases. Let X =R and £ = Q.

Claim: E° =0 and E = X.

Proof: Let x € X. Then for each » > 0, there exists a ¢. € E with
z < g <x+r. Thus

4 € (N, (@)\ {}) N E #0

for each r > 0. This says x is a limit point of E and so x € E, giving F = X.
Similarly, X \ E = X and so X \ E° = X, which gives E° = {).

One easily sees E° = () and (E)° = X and so we have counterexamples.
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Problem 29 from page 45
Let A C R open. We will first show that A can be written as a union
of disjoint open intervals, and then show that this collection of intervals is

necessarily countable.

Let z € A. We define the sets L, and U, by

Ly ={yeRly<zyz]C A}, U, ={y € Rly > z,[z,y] C A}

Since A is open, for all € > 0 sufficiently small, z+¢ € A, so L, and U, both
contain elements other than x. Note that L,,U, C A. Let ¢, = inf L,, and
d, = sup Ug; it is possible that ¢, could be —oo, and d, could be oco.

Claim 1: (¢g,2] C A and [z,d;) C A



Proof: If y € (¢g, ), then since ¢, is the inf of L,, y cannot a lower bound
for L. So there is some y’ with ¢, < ¢’ < y such that ¢’ € L,, or [y, 2] C A,
which implies y € A (in fact y € L,). The same argument applies for d,.

Claim 2: ¢, ¢ Aand d, ¢ A

Proof: This is immediate if ¢, = —oco. So suppose ¢, > —oc and ¢, € A.
Since A is open, there exists an € > 0 such that [c; —€,¢] C A (take any
e < r where B,.(¢;) C A.) But then [c, — €,¢,] U [cg, 2] = [z — €, 2] C A,
so ¢; — € € Ly, which is a contradiction since ¢, is the inf of L,. The same
argument applies for d,.

Claim 3: (¢z,z| = Ly and [z,dy) = Uy

Proof: The proof of claim 1 shows that (c;,x) C L,. Conversely, if y € Ly,
then ¢; <y <z, and by claim 2 y # ¢, s0 ¢z < y and y € (cg, 7.

We can now define F, = L, UU, = (¢, d;); one should think of E, as
the largest open interval around z contained in A. Note that F, C A, so
Uzea Bz C A, and conversely if x € A then x € E; C (J,c4 Ez, and so

A= UxEA E.
Claim 4: If z,y € A, then either F, = E, or £, N E, = .

Proof: Suppose E, # E,, and write E;, = (¢,d) and E, = (e, f). With-
out loss of generality assume ¢ < e. If e = ¢, then d # f; without loss of
generality d < f. Then d € E, C A; however, by claim 2 d ¢ A, a contra-
diction. So we can assume ¢ < e. If e < d, then e € E, C A; however, again
by Claim 2 e ¢ A, a contradiction. So e > d, which implies that (e, f) is
disjoint from (e, d).

In other words, let U = {E;|x € A}. Then U is a collection of open in-
tervals whose union is equal to A; by Claim 4 all of the intervals in I/ are
disjoint (think carefully about what Claim 4 says if this isn’t obvious to you.)

We still have to show that U is countable (by countable I mean either
finite or countably infinite.) We will do so by defining an injective map
f:U — Q. Let E € U. Then FE is an open interval (c,d); pick a rational
number ¢ € (¢,d) = E. Make such a choice for every interval in U.(*) We
define the map f: U — Q by f(E) = qp.



Claim 5: f is injective

Proof: Suppose f(E) = f(E’). Then qg € E N E’' by the definition of
f. But the intervals in U are disjoint, so £ = E’.

Thus, via f, U is bijective to a subset of Q. But Q is countable, and by
theorem 2.8 in Rudin every subset of a countable set is countable. Hence U
is countable.

(*) For those who know some Set Theory, you need to the full Axiom of
Choice to make these choices. If you don’t know what that means, don’t
WOITY.
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