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We define 

 
F = Q = 

√
{a + 2b|a, b ∈ Q} ⊂ R 

We wish to show that F is a subfield of R. In order to show this, we need 
to show that a) 0, 1 ∈ F ; b) F is closed under addition and multiplication; 
and c) if x ∈ F and x = 0, then −x ∈ F and 1/x ∈ F . The commuta­
tive, associate, and distributive properties all follow from the corresponding 
properties on R. 

 
a), b), and the √first half of c) are straightforward; we have 0 = 0 + 0 

√
 2 ∈ F

and 1 = 1 + 0 2 ∈ F . For b), we have 
√    

(a + b 2) + (c + d
√
 2) = (a + c) + (b + d)

√
2 ∈ F  

and √ √   
(a + b 2)(c + d 2) = (ab + 2cd) + (ad + bc)

√
2 ∈ F.  

If x = a + b
√
 

√ 
2, then −x = (−a) + (−b) 2 ∈ F . So the only fact remaining 

to show is that F is closed under multiplicative inverses. 

To prove this, we need the following 

 
Fact: if 0 = a + b

√
 2 ∈ F , then a = b = 0 
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Proof: Suppose b = 0. Then 

√
2 = −a/b ∈ Q, a contradiction. So we 

must have b = 0, and then 0 = a + 0 = a. 

 
√  

Now take x = a + b 2 ∈ F , x = 0. By the above fact, a 
√

− b 2 is also 
nonzero, and hence 

 
−  a 2 2b2 = (a + b 

√
2)(a 

√
− b 2) = 0 

Since the product of non-zero real numbers is non-zero. 

So we can define c   
√ = a/(a2 − 2b2) ∈ Q, d = −b/(a2 − 2b2) ∈ Q, and 

y = c + d 2 ∈ F . I claim that xy = 1, so y = 1/x and F contains multi­
plicative inverses. Indeed, 

√ √    1  a2  2b2
(a + b 2)(c + d 2) = (a + b

√
 2)(a 

√
− b 2) = 

2

−
= 1  

a  − 2b2 a2 − 2b2 

and we are done. 
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Problem 11 from page 23. 

Let z = a + bi ∈ C. We wish to show that z = rw, where r ≥ 0 is a 
positive real number and w is a complex number with |w| = 1. Suppose 
z = 0. Then we can take r = 0 and w = 1. If z = 0, we take r = |z| > 0, 
(r > 0 by theorem 1.33(a)) and take w = z/r. Then obviously z = rw, and 

z z|w| =  
| || | = = 1 

r |z| 

by theorem 1.33(c). As for uniqueness, r is always determined by z; in­
deed, if z = rw, we must have |z| = |rw| = |r| · |w| = |r| = r, since r ≥ 0. 
If z = 0, w is not determined by z, since for any w, rw = 0w = 0 = z. 
However, if z = 0, then r = 0, and then we must have w = z/r. So w is 
determined by z so long as z = 0. 
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Problem 9 from page 43.  
Let X be a metric space and E ⊂ X.  

a 

Let p ∈ E◦ . By definition, p is an interior point of E, so there exists an 
r > 0 such that Nr(p) ⊂ E. If we can show Nr(p) ⊂ E◦ it will follow that 
p is an interior point of E◦, and thus E◦ is open. But for any q ∈ Nr(p) we 
have 

Nr−d(p,q)(q) ⊂ Nr(p) ⊂ E, 

which implies q ∈ E◦, as required. 

(For the above inclusion we use the triangle inequality: 

x ∈ Nr−d(p,q)(q) =⇒ d(x, q) < r−d(p, q) =⇒ d(x, p) ≤ d(x, q)+d(p, q) < r 

=⇒ x ∈ Nr(p).) 

b 

E is open ⇐⇒ every point of E is an interior point of E ⇐⇒ E ⊂ E◦ . 

It is clear that we always have E◦ ⊂ E (since a neighborhood of a point 
contains the point). Hence, E is open if and only if E◦ = E. 

c 

Let G ⊂ E and suppose G is open. Given p ∈ G, there exists an r > 0 such 
that Nr(p) ⊂ G. Since G ⊂ E we have 

Nr(p) ⊂ E 

and so p ∈ E◦ . 

d 

By definition, x ∈ E◦ if and only if there exists an r > 0 such that 
Nr(x) ⊂ E. Thus, x /∈ E◦ if and only if for all r > 0, Nr(x) ∩ (X \ E) = ∅. 

Suppose that for all r > 0, Nr(x) ∩ (X \ E) = ∅. Then either x ∈ X \ E 
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or x is a limit point of X \ E, i.e. x ∈ X \ E. Conversely, if x ∈ X \ E, 
then either x ∈ X \ E or x is a limit point of X \ E and in either case 
Nr(x) ∩ (X \ E) = ∅, for all r > 0. 

e, f 

No, in both cases. Let X = R and E = Q. 

Claim: E◦ = ∅ and E = X. 

Proof: Let x ∈ X. Then for each r > 0, there exists a qr ∈ E with 
x < qr < x + r. Thus 

qr ∈ (Nr(x) \ {x}) ∩ E = ∅ 

for each r > 0. This says x is a limit point of E and so x ∈ E, giving E = X. 
Similarly, X \ E  = X and so X \ E◦ = X, which  gives E◦ = ∅. 

  One easily sees E◦ = ∅ and (E)◦ = X and so we have counterexamples. 
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Problem 29 from page 45 

Let A ⊂ R open. We will first show that A can be written as a union 
of disjoint open intervals, and then show that this collection of intervals is 
necessarily countable. 

Let x ∈ A. We define the sets Lx and Ux by 

Lx = {y ∈ R|y ≤ x, [y, x] ⊂ A}, Ux = {y ∈ R|y ≥ x, [x, y] ⊂ A} 

Since A is open, for all E > 0 sufficiently small, x ± E ∈ A, so Lx and Ux both 
contain elements other than x. Note that Lx, Ux ⊂ A. Let cx = inf Lx, and 
dx = sup Ux; it is possible that cx could be −∞, and dx could be ∞. 

Claim 1: (cx, x] ⊂ A and [x, dx) ⊂ A 
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Proof: If y ∈ (cx, x), then since cx is the inf of Lx, y cannot a lower bound 
'for Lx. So there is some y' with cx < y' < y such that y' ∈ Lx, or [y , x] ⊂ A, 

which implies y ∈ A (in fact y ∈ Lx). The same argument applies for dx. 

Claim 2: cx ∈/ A and dx ∈/ A 

Proof: This is immediate if cx = −∞. So suppose cx > −∞ and cx ∈ A. 
Since A is open, there exists an E > 0 such that [cx − E, c] ⊂ A (take any 
E < r where Br(cx) ⊂ A.) But then [cx − E, cx] ∪ [cx, x] = [cx − E, x] ⊂ A, 
so cx − E ∈ Lx, which is a contradiction since cx is the inf of Lx. The same 
argument applies for dx. 

Claim 3: (cx, x] = Lx and [x, dx) = Ux 

Proof: The proof of claim 1 shows that (cx, x) ⊂ Lx. Conversely, if y ∈ Lx, 
then cx ≤ y ≤ x, and by claim 2 y = cx, so cx < y and y ∈ (cx, x]. 

We can now define Ex = Lx ∪ Ux = (cx, dx); one should think of Ex as 
the largest open interval around x contained in A. Note that Ex ⊂ A, so � � 

⊂ A, and conversely if x ∈ A then x ∈ Ex ⊂ , and so x∈A�Ex x∈A Ex

A = x∈A Ex. 

Claim 4: If x, y ∈ A, then either Ex = Ey or Ex ∩ Ey = Ø. 

Proof: Suppose Ex = Ey, and write Ex = (c, d) and Ey = (e, f). With­
out loss of generality assume c ≤ e. If e = c, then d = f ; without loss of 
generality d < f . Then d ∈ Ey ⊂ A; however, by claim 2 d /∈ A, a contra­
diction. So we can assume c < e. If e < d, then e ∈ Ex ⊂ A; however, again 
by Claim 2 e ∈/ A, a contradiction. So e ≥ d, which implies that (e, f) is 
disjoint from (c, d). 

In other words, let U = {Ex|x ∈ A}. Then U is a collection of open in­
tervals whose union is equal to A; by Claim 4 all of the intervals in U are 
disjoint (think carefully about what Claim 4 says if this isn’t obvious to you.) 

We still have to show that U is countable (by countable I mean either 
finite or countably infinite.) We will do so by defining an injective map 
f : U → Q. Let E ∈ U . Then E is an open interval (c, d); pick a rational 
number qE ∈ (c, d) = E. Make such a choice for every interval in U .(*) We 
define the map f : U → Q by f(E) = qE . 
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Claim 5: f is injective 

Proof: Suppose f(E) = f(E ' ). Then qE ∈ E ∩ E ' by the definition of 
f . But the intervals in U are disjoint, so E = E ' . 

Thus, via f , U is bijective to a subset of Q. But Q is countable, and by 
theorem 2.8 in Rudin every subset of a countable set is countable. Hence U 
is countable. 

(*) For those who know some Set Theory, you need to the full Axiom of 
Choice to make these choices. If you don’t know what that means, don’t 
worry. 

6 



MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



