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We have a metric space (X, d), and define the function d'(x,y) = v/d(z,y).
We wish to show that (X, d’) is also a metric space with the same open sets
as (X, d). We first check that d’ is a metric.

(a) If  # y, then d'(z,y) = \/d(z,y) > 0 since d(z,y) > 0, and simi-
larly d'(z,z) = 0.

(b) d'(z,y) = V/d(z,y) = \/d(y,x) = d'(y, )

(c) For the triangle inequality, we first need the following elementary

Fact: If a,b > 0, then va+b < Va+ V.

Indeed, squaring the right hand side gives a + b+ 2vab > a + b, and the

square root function is order preserving. Using this fact, for z,y,z € X we
have

d(x,2) = /d(z,2) < \/d(z,y) +d(y, 2) < Vd(z,y)+/d(y, z) = d (z,y)+d (y, 2)

Now, let £ be an open set for £. We need to show that it is open for
d. Let x € E. Then there is some r > 0 such that the ball of radius r
around z is contained in E, where the ball is taken with respect to d, i.e.
N,(x) C E. But the ball of radius r with respect to d is the ball of radius
/7 with respect to d’, so there is a neighbourhood of x with respect to d’
contained in E. In other words, F is open with respect to d’. Similarly, a
set that is open with respect to d’ is also open with respect to d.
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We prove the result for R"™.
Lemma: Q™ is dense in R".
Proof: Just use the density of Q in R for each coordinate.

Theorem: Let n € N and let S € R™ be a set such that every point in
S is isolated. Then S is at most countable.

Proof: Fix s € §. Since s is an isolated point, there exists an 7; > 0 such
that Ny, (s) NS = {s}; let ry = 75/2 and pick an element t5 € N, (s) N Q™.
Doing this for each s defines a function

f:58—=>Q" s—ts.

We now go about showing that f is injective; since Q" is countable this will
show S is at most countable.

Suppose f(s) = f(5) and let ¢t = f(s). Then t = t; = t; € N, (s) N Ny (3).
Thus
d(s,5) <d(t,s)+d(t,35) < rs+r; < max{Fs, 75}

so either s € N;j.(5) or § € Ny (s). In either case we obtain s = 3.
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X is a space where every infinite subset has a limit point. We first prove
the following

Lemma 1: Let 6 > 0. Then there exists a finite set N5 with the follow-
ing properties: (a) For every z,y € N5, v =y, d(z,y) > 0. (b) For every
z € X, there exists a y € N such that d(z,y) < 4.

Fix § > 0. We construct Ng inductively. Pick an arbitrary x; € X. Assume
we have x1,22... %y, with d(z;,z;) > ¢ for ¢ = j. If every point of X is
within ¢ of {z1,...zy}, then we can take Ns = {x1, ...z, } which satisfies
(a) and (b) of the lemma. If not, we choose z,+1 such that d(zm4+1,2;) >0
forl<i<m.



We claim that this process must terminate at some finite M, at which point
we are done. If not, then by this process we have constructed an infinite set
C = {x1,29,23...} with d(z;,z;) > § for i # j. By our assumption on X,
this set has a limit point . Now consider the open neighbourhood Nj,4(z).
This must contain two distinct points x; # x; # « (in fact, infinitely many
points, by Theorem 2.20.) Using the triangle inequality, we have

0 <d(zj,xzj) < d(zj,x) +d(z,zj) <5/4+6/4=06/2

A contradiction.

Using the above Lemma, for each m € N, we have a finite set Ny, such that
every point of X is within 1/m of some point of Ny/,. Let D = Uy, Ny /p,.
D is a countable union of finite sets, and hence is countable. We claim
that D is dense. Take any x € X, and r > 0. Pick an m sufficiently large
that 1/m < 7. Then by definition there is a y € Ny, C D such that
d(xz,y) < 1/m. But then y € N,(z). Since z and r are arbitrary, this proves
that D is dense.
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Let A = {p € R|p = d(z, f(x) for some = € X}. Since distances are non-
negative A is bounded below by 0. Let a = inf A. Obviously a > 0. We
make the following claim, which we will prove later

Claim: There exists z € X such that d(z, f(z)) = a. In other words,
the infimum is actually attained in A.

Now, assuming the claim, if a = 0, then we are done, since 0 = d(z, f(z)) so

x = f(x) is a fixed point. So suppose a > 0. Then x # f(x). Set y = f(x).
Then we have d(y, f(y)) € A, and

d(y, f(y)) = d(f(x), f(y)) < d(z,y) = d(z, f(z)) = a

Which is a contradiction, since a is a lower bound for A. So a = 0 and
we are done.

Proof of the claim: suppose the claim is false. Define the set U, = {z €



X|d(z, f(z)) > a+1/n}. We claim that the sets U,, cover X. For any z € X,
since the inf is not attained, we must have d(z, f(x)) = a + r where r > 0.
Take n € N sufficiently large that » > 1/n. Then d(z, f(x)) > a+ 1/n, so
z € U, and the U,’s cover X.

We claim that U, is open. To see this, let x € U,. Then d(z, f(z) >
a + 1/n. Choose a small ¢ > 0 such that € < (d(z, f(x)) —a — 1/n)/2;
then d(x, f(x)) —2¢ > a+ 1/n. Then we have Nc(z) C U,. To see this,
let y € N(z). Note that d(f(x), f(y)) < d(x,y) < € since f is contracting.
Then using the triangle inequality twice, we have

d(z, f(z)) < d(z,y)+d(y, f(z)) < d(z,y)+d(y, f(y)+d(f(y), f(z)) < e+d(y, f(y))+e

Rearranging this, we get

d(y, f(y)) > d(z, f(z)) —2¢ > a+1/n

So y € U,. Thus we have showed that every point of U, has a neighbour-
hood contained entirely in U,, so Uy, is open.

In other words, we have constructed an open cover {U,} of X. Since X
is compact, this cover has a finite subcover {U,,,...U,,, }; assume we have
labelled these such that n; < n; for i < j. Note that the U, are increasing,
ie. Uy C Uy if m < n. Thus U,, C Uy,,,, and so {U,,,} also covers X,
ie. X = Up,,. But then for all x € X, we have d(z, f(z)) > a+ 1/ny, by
the definition of U, . Thus a + 1/n,, is a lower bound for A strictly larger
than a, which contradicts the fact that ¢ = inf A. This proves the claim,
and hence the result.
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