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Let n nsn =
 

i=1 xi and σn =
 

i=1 yi be the partial sums. Then we claim 
that σn is the average of the first n sn, i.e. 

s
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· · · sn
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To see this, we will look at the ”coefficients” of the xk in the expressions for 
the yj ; if this makes you nervous, think of them as variables, for which we 
will later plug in values to get actual sequences of real numbers. If k > j, 
then xk does not appear in the expression for yj , while if k ≤ j then xk 
appears with a coefficient of (k − 1)/(j(j − 1)), where this expression should 
be interpreted as equal to 1 in the degenerate case k = j = 1. Note that 
1/(j(j − 1)) = 1/(j − 1) − 1/j. Using this, we can determine the coefficient 
of xk in σn; this is zero if j > n, and if j ≤ n, it is equal to 
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Where we got rid of the sum by noting that the negative part of one term 
of the sum is equal to the positive part of the next term, and hence the sum 
”telescopes” to 1/(k − 1) − 1/n. But now consider the sum of partial sums 
s1 + s2 + · + sn; xk will appear precisely n − k + 1 times as long as k ≤ n, 
and hence the coefficient of xk in (s1 + s2 + · · · + sn)/n is (n − k + 1)/n, 
which is exactly the coefficient we computed above for σn, and hence σn is 
the average of the sn as desired. 
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Fact: Suppose {sn} is a sequence of real numbers with sn → s as n → ∞. 
Then if σn = s1+s2+···sn , then σn n  n  → ∞ as → ∞

Proof: The idea is to split the sum determining σn into two parts; one 
part will be small because the denominator is large, and the other part 
will be close to s. Fix E > 0, let N ∈ N be sufficiently large that for 
n > N  we have |s − sn| < E. With this N fixed, choose M >> N such 
that (| N

i=1 si|)/M < E and such that N |s|/M < E. Note that both these 
inequalities will continue to hold for n > M . For any such n, we compute 

Thus σn → s as n → ∞ and the claim is proved. 

Now take the alternating series 1 − 1 + 1 − 1 + · · · . This has partial sums 
si = 1 if i is odd, and 0 if i is even. Thus taking averages, we have σn = 1/2 
if n is even, and (n + 1)/(2n) if n is odd. Since limn (n + 1)/(2n) = 1/2, →∞
we see that σn → 1/2. 
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We define f(x) = 1/2(x + α/x) for x ∈ R. We have 

 
Claim: suppose x > 

√
α. Then x > f(x) >

√
α. 

Proof: We have 

 x − f(x) = x − 1/2(x − α/x) = 1/2(x − α/x) = 1/2((x 2 − α)/x) > 0 
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Now, by assumption there is a number s with s = ∞
i=1 xi. More pre-

cisely, this means that sn → s as n → ∞. Hence the fact

∑
that s = ∞

i=1 yi
will follow from the following

∑

|σn − s| =
|
∑N

i=1 si +
∑n

i=N+1 si − ns|
n

≤
|
∑N

i=1 si|
n

+
|
∑n

i=N+1 si − (n−N)s|
n

+
N |s|
n

< ε+
|
∑n

i=N+1 |si − s|
n

+ ε < 2ε+
(n−N)ε

n
< 3ε

(|
∑N

i=1 si|)



2Since x > α > 0. For the other inequality, we will show that f(x)2 > α. 
We compute  

1 α α 1 α2 α 1 x2α2 
2( (x + )2 = + (x + ) > + = α

2 22 x 2 4 x 2 2 x

We used the AM-GM inequality, which states that for any positive real num­√ 
bers a and b, (a + b)/2 > ab, with equality if and only if a = b; this can √ √ 
be proved by noting that ( a − b)2 ≥ 0, with equality if and only if a = b. 
This proves the claim. 

Now, we start with some x1 > α, and we inductively define xn+1 = f(x). 
Then by the claim, (xn) is a decreasing sequence, bounded from below by √ 
α. By Rudin Theorem 3.14, this sequence converges to some x. Since√ 

x is the inf of (xi), we must have x ≥ α > 0. Hence by Rudin The­
orem 3.3, we have limn→∞ 1/xn = 1/x. Applying this Theorem repeat­
edly, we then have α/xn → α/x, then xn + α/xn → x + α/x, and finally 
1/2(xn + α/xn) → 1/2(x + α/x). In other words, we have f(xn) → f(x) 
as x → ∞ (readers who are familiar with the concept will note that this 
argument amounts to proving the continuity of f). But by the definition of 
(xn), we have 

f(x) = lim f(x) = lim xn+1 = x 
n→∞ n→∞ 

√2In other words, x = 1/2(x + α/x), or x = α. This means that x = ± α,√ √ 
but since x ≥ α, we have x = α. 
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We have an alternating sequence (ci), i.e. c2k > 0 and c2k+1 < 0 for all 
k ∈ N, with the property that |ck| > |ck+1| and |ck| → 0 as k → ∞. We 

nhave the partial sums sn = k=1 of ck, and we wish to show that (sn) 
converges. Suppose n, m ∈ N, and that n > m. When comparing sn and 
sm, there are four cases, depending on the parity of m and n 

Case 1: n and m are odd. Then sn > sm. Indeed, note that sm+2 − sm = 
cm+1 + cm+2. Since m + 1 is even, cm+1 > 0, and cm+1 > |cm+2|, so 
cm+1 + cm+2 > 0. 
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∑



Case 2: n and m are even. Then sn < sm. The argument is the same 
as Case 1. 

Case 3: n is odd and m is even. Then sm > sn. Indeed, by Case 2 sm > sn+1. 
But sn+1 − sn = cn+1 > 0. 

Case 4: n is even and m is odd. Then sn > sn. Same argument as Case 3. 

Putting these together, we see that s1 < s3 < · · · is an increasing sequence, 
bounded above, s2 > s4 > · · · is a decreasing sequence, bounded from be­
low, and that if k is even and j is odd then sk > sj . Thus by Rudin Theorem 
3.14 there are real numbers r, s with limk s→∞ s2k = s and limk→∞ 2k+1 = r. 

If one examines the proof in Rudin, one sees that r is the least upper bound 
of the (s2k+1), and s the greatest lower bound of (s2k). For any n ∈ N, s2n+1 
is a lower bound for the set of even sk, and hence s2n+1 ≤ s. Since r is the 
sup of the odd ones, this means that r ≤ s. 

If r = s, then we are done, since for any E > 0, take N sufficiently large such 
that for for any k > N , then both |s − s2k| < E and |s2k+1| < E; then 2N 
will work for this E and sn → s. 

So suppose s > r. Pick δ < (r − s)/2 and k odd and sufficiently large 
that δ > ck+1 > 0. Then sk ≤ r and sk+1 ≥ s and so 

ck+1 = sk+1 − sk ≥ s − r > δ > ck+1 

Which is a contradiction. 
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We are looking for an explicit rearrangment of the convergent series 1−1/2+ 
1/3 − 1/4 + · · · that does not converge. We will construct a rearrangment 
whose partial sums go to infinity as n → ∞. 

4 

∑nLet xk = 1/(2k + 1) and sn = k=0 xn. Then (sn) is an increasing se-



Now we pick an increasing sequence N1, N2 . . . of positive integers as fol­
lows. Set N1 = 1. Having chosen N1, . . . Nk, we pick an Nk+1 such that 
sNk+1 − sNk > 1/2; since sn → ∞, this is always possible. 

In fact, we can be a little more precise in our choice of Nk. An slight refine­
ment of the above argument shows that, for n > m, we have 2(sn − sm) > 
s2
;
n+1 − s2m. But the proof of the divergence of the harmonic series shows 

 ; − ;       k that s k+1 s k > 1/2; indeed, this sum has 2 terms in it, each of which is 
2 2

larger than 1/2k+1 . Thus if we take Nk = 22(k−1), we will have 

1 1 
sN − sN > (s22k+1+1 − s22k 1k+1 k −  > 

2 2 

as desired. 

We can now desribe our divergent rearrangment of the sum: 

 ·

By construction, the negative terms of this sum are very sparse, occur­
ing only at numbers of the form Nk + k; for notational convenience, we 
define Mk = Nk + k. Let tn be the n’th partial sum; our goal is to prove 
limn→∞ tn = ∞. 

Fact 1: if Mk < n < Mk+1, then tMk < tn 
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quence, and I claim sn →∞ as n→∞. In fact, we can be more precise:

∑n n n
1 1

2sn = +
2k + 1

∑ n
1 1

> +
2k + 1

∑
2k + 1

∑
2k + 2

k=0 k=0 k=0 k=0

2n+2

=
∑ 1

= s′
j 2n+2

j=1

Where s′2n+2 is the partial sum of the harmonic series. But ∞
j=1 1/j =∞,

so sn must also diverge.

∑

1− 1

2
+

N2∑
j=N1+1

1

2j + 1
− 1

4
+ · · ·+

Nk∑
j=Nk−1+1

1

2j + 1
− 1

2k
+ · · ·



Fact 3: tMk > k/2 

Proof: tM1 = 1/2, so the result follows from Fact 2 and induction. 

With these facts, we can show that tn diverges. Let r be any real num­
ber, and pick k ∈ N such that k/2 > r. Then I claim that for n > Mk, 

 tn > k/2 > r. To see this, for any such n take k; such that Mk' ≤ n < Mk'+1; 
then by fact 1 tn ≥ tM  . We must  have k; ≥ k, since n > Mk, and so by 

k'

fact 3 tM  > k;/2 ≥ k/2 > r. This proves that t
k' k → ∞ as k → ∞. 
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kPro − nof: tn tMk
=

∑
j=
−
N +1 1/(2j + 1) > 0

k

Fact 2: for k ≥ 1, tMk+1
− tMk

> 1/4

Proof:

Nk+1

tMk+1
− tMk

=
∑

1/(2j + 1)− 1/(2k + 2) > 1/2− 1/(2k + 2) > 1/4
j=Nk+1
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