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Let s
 n

k = k=1 xk. Then we say that k
∞
=1 xk converges to s if the sequence 

sn converges to s as n → ∞. 

 
Now suppose

 ∞
k=1 xk = s converges to some s = 0. We wish to show 

that limk xk = 1. Let yk = xk − 1; then this is equivalent to limk yk = 0. 
Note that 

nn+1 nn  n  
sn+1 − sn = xk − xk = (xn+1 − 1) 

k=1 k=1 k

n
xk = yk+1sn 

=1 

Now pick E > 0; we will find N ∈ N such that n > N =⇒ |yn| < E, which 
will prove that limk yk = 0. Since limn sn = s and s = 0, there exists an 
M such that n > M =⇒ |s − sn| < |s|/2, which implies |sn| > |s|/2. Let 
δ > 0 be sufficiently small that E|s|/2 > δ. Since sn converges it is a Cauchy 
sequence, so there exists N > M such that for n,m > N , |sn − sm| < δ. In 
particular, for any n > N we have 

s
δ > |sn+1  sn  = yn+1sn  > yn+1  

| |− | | | | | ·
2 

So |yn+1| < 2δ/|s| < E. So N + 1 works for this E. 

As for
 ∞

k=1(1 + 1/k), we have 
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Since the partial sums
 n

k=1 1/k diverge to infinity, we must have limn sn = 
∞, and so this product does not converge. 
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Here we adapt Rudin’s proof of Theorem 3.27. Let a1 > a2 > a3 · · · > 0 be 
a decreasing sequence of positive  2um ers.  bn =

 n−1real n b  Let k=2n−1 ak. We 
then have 

n
1

>
k

k=1

∑

n∑
bn = ak

k=1 k=1

So
∑

k bk converges if and only if
∑

k ak does, and converges to the same
value. Since ak is decreasing, we have

2n−1 1

bn =
∑ 2

ak <
∑n−

a2n 1 = 2n−1a− 2n−1

k=2n−1 k=2n−1

Now specialize to the case a 2
k = 1/k . Then 2na n

2n = 2n−2n = 2− . Thus we
have the estimate

∑∞ 1
=

k2
k=1

∑∞ ∞

bk < 2
k=1

∑
2−k =

k=0

(Note the index shift), which is not quite as tight as we want. However, we
can use the same idea to get sharper estimates. Indeed, note that

∑∞
bk <

∑∞
2−k = 2−3

k=5 k=4

On the other hand, we can explicity compute

15
1

b1 + b2 + b3 + b4 =
∑

≈ 1.58 < 1.6
k2

k=1

Of course one should give the precise fractional value, rather the than ap-
proximate decimal one, but I don’t have Mathematica handy at the moment,
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2n−1∑



 

 

and this estimate is sufficient. 

Putting these two estimates together, we have 

For those who are curious, the actual value is π2/6, first calculated by Euler 
with an argument that is at the same time brilliant and sufficiently unrig­
orous that you would probably receive no credit if you wrote it up for this 
course. 
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We have a continuous function f : X → Y , and E ⊂ X. We wish to show 
that f(E) ⊂ f(E) Let x ∈ E. Then f(x) ∈ f(E) if any only if, for every 
E > 0, NE(f(x)) ∩ f(E) = ∅. 

So let E > 0. Since f is continuous at x, there exists δ > 0 such that 
for all y ∈ X, d(x, y) < δ =⇒ d(f(x), f(y)) < E. But x ∈ E, so all neigh­
bourhoods of X intersect E. In other words there exists y ∈ E such that 
d(x, y) < δ. Then d(f(x), f(y)) < E, so f(y) ∈ NE(f(x)) ∩ f(E) = ∅ and we 
are done. 

To show that the inclusion can be proper, let X = Q, Y = R, f : X → Y 
the inclusion ι : Q y = X Obviously every set is closed as a → R, and E = Q. 
subset of itself, so E = E. However, f(E) = Q ⊂ R is dense, and f(E) = R. 
Then f(E) \ f(E) = R \ Q, and hence the inclusion is certainly proper. 
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We have a continuous function f : X → R. Note that the one point set 
{0} ⊂ R; indeed, by Rudin Theorem 2.20 finite subsets of arbitrary metric 
spaces are closed. By Rudin Theorem 4.8 a function is continuous if and only 
if the inverse image of any closed set is closed. So Z(f) = f−1({0}) ⊂ X is 
closed. 

If you don’t believe that, we can provide essentially the same proof us­
ing the previous problem. Let E = Z(f), and note that f(E) = {0}. Then 
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∞ 4
1

∞

= bk + bk < 1.6 + 2
k2

−3 = 1.725 < 1.75 = 7/4
k=1 k=1 k=5

∑ ∑ ∑
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we have 
f(E) ⊂ f(E) = {0} = {0} 

Which is to say that E ⊂ f−1({0}) = E, i.e. E is closed. 
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