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November 14, 2012 

For bounded functions f, g : [a, b] → R, we use the notation ||f || = 
p{|f(x)||x ∈ [a, b]} and d(f, g) = ||f − g||. 

 

e have fn → f and gn → g uniformally. We wish to show that fbgn → fg 
niformally as well. Let E > 0. f and g are bounded by assumption, 
 pick K ∈ R with ||f ||, ||g|| < K. We may assume K > E. Pick a 
> 0 with δ < E/(3K), and pick N ∈ N sufficiently large that for n > N , 
f − fn||, ||g − gn|| < δ, which is possible by Rudin 7.9. Note that for any 
ch n > N , we have by Rudin 7.14 

||fn|| ≤ ||fn − f || + ||f || < δ + K < 2K 

nd similarly ||gn|| < 2K. Let x ∈ [a, b]. We then have, for n > N , 

(x)g(x)−fn(x)gn(x)| = |(f(x)g(x)−f(x)gn(x))+(f(x)gn(x)−fn(x)gn(x)| 

< |f(x)(g(x) − gn(x))| + |gn(x)(f(x) − fn(x))| 

= |f(x)| · |g(x) − gn(x)| + |gn(x)| · |f(x) − fn(x)| 

< Kδ + 2Kδ < E 

ince this was true for any x ∈ [a, b], we must have ||fg − fngn|| < E for any 
> N , which proves the result. 
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Let F be the set of all continuous functions f : [0, 1] → R with f(0) = 0 and 
f(1) = 1. We have to show that if f ∈ F , then f̂  ∈ F . We have 

f̂(0) = 
1 
f(2 · 0) = 

1 
f(0) = 0 

4 4 

and 
3 1 3 1 

f̂(1) = f(2 − 1) + = + = 1 
4 4 4 4 

We also need to show that f̂  is continuous. At points x  = 1/2 f̃  is contin­
uous by Rudin 4.7, we just need to show that it is continuous at 1/2. Note 
that f̃(1/2) = 3/4(f(0)) + 1/4 = 1/4 

Let E > 0. Pick δ > 0 such that 

|x − 0| < 2δ =⇒ |f(x) − f(0)| = |f(x)| < E 

and 
|x − 1| < 2δ =⇒ |f(x) − f(1)| = |f(x) − 1| < E 

Now suppose |x − 1/2| < δ. We wish to show that |f̃(x) − f̃(1/2)| = 
|f̃(x) − 1/4| < E. There are two possibilies. 

If x < 1/2, then |1 − 2x| < 2δ, and so |f(2x) − 1| < E. But then 

1 1 1 E |f̃(x) − f̃(1/2)| = | f(2x) − | = |f(2x) − 1| < 
4 4 4 4 

Similarly, if x > 1/2, then again |2x − 1| < 2δ, and so |f(2x − 1)| < E. Then 

3 1 1 3 3E |f̃(x) − f̃(1/2)| = | f(2x − 1) + − | = |f(2x − 1)| < 
4 4 4 4 4 

In either case |f̃(x) − f̃(1/2)| < E, so f̃  is continuous at 1/2. 

Suppose f, g ∈ F , and let x ∈ [0, 1]. If x < 1/2, we have 

1 1 1 1 1 |f̃(x)− g̃(x)| = | f(2x)− g(2x)| = |f(2x)−g(2x)| ≤ ||f −g|| = d(f, g)
4 4 4 4 4 
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Similarly, if x ≥ 1/2, we have 

3 1 3 1 |f̃(x) − g̃(x)| = |( f(2x − 1) − ) 
4 4

− ( g(2x − 1) − )
4 4

|

3 3 3 
= |f(2x − 1) − g(2x − 1)| ≤ ||f − g|| = d(f, g)

4 4 4 
In either case |f̃(x) − g̃(x)| ≤ 3/4d(f, g), and so 

3 ˜ ˜d(f, g̃) = ||f − g̃|| ≤ d(f, g)
4 

Now, F is a metric space with metric d(·, ·), and by what we have shown we 
can think ofˆ: F → F as a function which contracts distances by at least 3/4. 

Now suppose that F is actually a complete metric space. Then by the 
Contraction Mapping Theorem, Rudin 9.23 (which we have proved on a 
previous homework), there would have to be a unique element f ∈ F with 
f̂ = f . So we just have to prove that F is complete. 

Note that F ⊂ C = C([0, 1], R), the set of all continuous functions [0, 1] → R, 
and in fact the metric on F is the restriction of the metric on C By Rudin 
Theorem 7.15, C is a complete metric space. But closed subsets of complete 
metric spaces are themselves complete (you should check this if it isn’t ob­
vious to you), so if we can show that F ⊂ C is closed then we are done. 

We will show that F ⊂ C is closed by showing that its complement is open. 
So let f ∈ C \F . Then either f(0) = 0 or f(1) = 1. Without loss of general­
ity suppose f(0) = 0. Let E > 0 such that |f(0)| > 2E. Then if d(f, g) < E, in 
particular |f(0) − g(0)| < E, and so |g(0)| > E,  and g ∈ Fc. In other words, 
BE(f) ⊂ Fc, and  so Fc is open. 

Another, more conceptual way to prove that F is closed is to show that 
for any a ∈ [0, 1], the map eva : C → R given by eva(f) = f(a) is continu­
ous. But the inverse image of a closed set under a continuous map is closed, 

−1 and so F = ev0 (0)∩ev −1
1 (1) is also closed. Details are left to the interested 

reader. 

3 

6 6
6



3 

For any x ∈ [a, b], the sequence f1(x), f2(x), . . . is an alternating sequence 
of real numbers of decreasing norm, with the norm converging to 0. Hence 
by Rudin 3.43, or by a previous homework problem, the series

 
n fn con-

verges.   Define a function (not necessarily continuous) f : [a, b] → R by 
f(x) := n fn(x). Then the nsequence of partial sums sn = k=1 fk con­
verges pointwise to f . We wish to show that the convergence 

 
is uniform. 

Let E > 0. We need to find an N ∈ N such for n > N and any x ∈ [a, b], 
|f(x) − sn(x)| < E. We know that fk → 0 uniformally. So let N ∈ N be 
sufficiently large that |fk(x)| < E for all k > N , x ∈ [a, b]. 

We now need the following 

Lemma:   Suppose (an) is an alternating sequence as in Rudin 3.43, and 
a = n an. Then |a| < |a1|.  

Assume the Lemma for the moment. For any n > N , indeed any n, we 
have 

∞

f(x) − sn(x) = 
0

fk(x) 
k=n+1 

But 
 ∞

k=n+1 fk(x) is itself an alternating series. By the Lemma, we then 
have  

∞

|f(x) − sn(x)| = | 
0

fk(x)| < |fn+1(x)
 

| < E 
k=n+1

Since the choice of N did not depend on the point x, we have sn → f uni­
formally. 

Proof of Lemma: We first show that a1 and a have the same sign. We 
have 0∞ ∞

a = an = (a1 + a2) + (a3 + a4) + · · · =
0

(a2n−1 + a2n) 
n=1 n=1 

All terms a2n 1 − a2n in the sum on the right have the same sign as a− 1, and 
so a must also have the same sign as a1. 
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Now assume a1 > 0. Then a > 0 as well, and a − a1 =
∑∞

n=2 an. But
by the previous paragraph, the latter sum has the same sign as a2, which is
negative. Hence a−a1 < 0, and 0 < a < a1, so |a| < |a1|. The result follows
for a1 < 0 by replacing an with −an.
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