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Write B! := B!([a,b]), d(f,g9) = SUPge(ap) |f(2) — g(2)| the uniform met-
ric on real bounded functions, and d'(f,g) = d(f,g) + d(f’,g’) the given
metric on B!. Note that if f,¢g € B', then f, f’,g,¢" are all bounded, and
d(f,9) < d'(f,g) and d(f',g') < d'(f,9).

Now, let (f;) be a Cauchy sequence in B'. Then I claim that (f/) is Cauchy
sequence with respect to d, the uniform metric. Indeed, for any ¢ > 0
pick N sufficiently large that n,m > N = d'(f,, fm) < €. But then

d(fh, 1) < d'(fu, fm) <, s0 (f!) is Cauchy.

Thus by Rudin Theorem 7.8, (f/) is uniformally convergent. By a similar
argument, (f;) is also uniformally convergent, and in particular the sequence
(fi(zg)) converges for any zp € [a,b]. Thus by Rudin Theorem 7.17, there
exists a differentiable function f : [a,b] — R such that f; — f uniformally

and f/ — f" uniformally.
I claim that f € B'. To prove this, we need to show that f’ is bounded. Pick

N sufficiently large that d(fy, f’) < 1. Since fj is bounded, there exists
M > 0 such that |fy(x)] < M for all x € [a,b]. But then

[f'@)] < 1f (@) = fo@)] + [fn@)] <1+ M

So f'is bounded and f € B!

Finally, we need to show that f; — f in B!. Let ¢ > 0. Pick N suffi-
ciently large that n > N implies d(f,, f) < €¢/2 and d(f},, f’) < €, which we



can do by uniform convergence. Then d'(f,, f) = d(fn, f) +d(f, f) < e,
so fp, — fin B
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We will prove the following more general lemma, which will imply the result

Lemma: Suppose (f,) is a sequence of functions from [a,b] — R, and
fn — f uniformally. Suppose furthermore that for every p € (a,b] the left
limit f,,(p—) exists for all n. Then the left limit f(—p) exists for all p € (a, b].

A similar result holds for right limits f(p+) for p € [a,b) with the same
proof (after the obvious changes are made).

Before we prove the Lemma, let us show how it implies our result. Let
f :]a,b] — R be a step function, and p € [a, b]. If p is not one of the finitely
many ”step” points of f, then f is continuous at p, and so clearly the left
and right limits f(p—) and f(p+) exist (and are in fact equal). If p happens
to be one of the step points of f, there is some small € > 0 and ¢, d € R such
that for x € (p—e€,p), f(z) = ¢, while for z € (p,p+€), f(x) = d. But then
f(p—) = cand f(p+) = d, so the left and right limits both exist.

Hence if (f,) is a uniformally convergent sequence of step functions, and
p € [a,b] the limits f,(p—) and f,(p+) exist, hence by the lemma so do the

limits f(p—) and f(p+).

Proof of Lemma: This argument is almost word for word the same as the
proof of Rudin Theorem 7.11. Let p € (a,b], and set A, = f,(p—). We
first want to show that (A,) is Cauchy. Let ¢ > 0. Since (f,,) is uniformally
convergent it is Cauchy, we there exists N € N such that for n,m > N and
x € [a, b] we have

[fu(z) — fm(z)| <€
Then letting x — p— (i.e. = approaches p from below) we have

|Ap — A <€

Thus (A;) is Cauchy, and hence converges to some number A



We need to show that A = f(p—), and in particular that f(p—) exists.
Again let € > 0. For any « € [a,b] and n € N we have

[f(x) = Al < [f(2) = ful@)| + | fn(2) = Anl + |An — A

Since f,, — f uniformally and A,, — A, we can pick n sufficiently large that
for all = € [a, b]

(@) — J(@)] < §

and .
A—A, —
A4 Ay < £

Since f,(p—) = Ay, there exists § > 0 such that for z € (p — 4, p),
€
|fn(x) - An| < g

. Putting these inequalties together, we see that for x € (p — J,p) we have
|f(z) — Al <e

Which implies A = f(p—).
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Let p(z) = >_}_, axz* be any polynomial. Then if ¢(z) = (p(z)—p(—z))/2 =
S h_, bra®, we have that by = ay if k is odd, and by = 0 if k is even. In
particular, ¢(x) is an odd polynomial.

Now let f: [—1,1] — R be any continuous function, not necessarily odd. By
the Weierstrass theorem there exists a sequence of polynomials p,(z) with
pn(x) — f(x) uniformally on [—1,1].

If f,g : [-1,1] — R are any two bounded functions, we obviously have
SUPgei—11] |f(#)—g(z)| = supge_117 [f(—2)—g(—2)|. In particular, p,(—z) —
f(—z) uniformally. Hence if we define ¢,,(z) = (pn(z) —pn(—2))/2, then (g,)
is a sequence of odd polynomials, and g, (z) — (f(x)— f(—x))/2 uniformally.

However, if f is odd, then (f(z) — f(—x))/2 = (f(z) + f(x))/2 = f(2),

SO @n — f uniformally.



MIT OpenCourseWare
http://ocw.mit.edu

18.100C Real Analysis
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu



