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 Write B1 := B1([a, b]), d(f, g) = supx [a,b] |f(x) − g(x)| the uniform met­
1
∈

ric on real bounded functions, and d (f, g) = d(f, g) + d(f ', g') the given 
metric on B1 . Note that if f, g ∈ B1, then f,  f ', g, g' are all bounded, and 
d(f, g) ≤ d1(f, g) and d(f ', g') ≤ d1(f, g). 

Now, let (fi) be a  Cauchy sequence in B1. Then I claim that (fi
') is Cauchy 

sequence with respect to d, the uniform metric. Indeed, for any E > 0 
pick N sufficiently large that n,m > N =⇒ d1(fn, fm) < E. But then 
d(f ' , fm

' ) ≤ d1n (fn, fm) < E, so (fi
') is Cauchy. 

Thus by Rudin Theorem 7.8, (fi
'
 ) is uniformally convergent. By a similar 

argument, (fi) is also uniformally convergent, and in particular the sequence 
(fi(x0)) converges for any x0 ∈ [a, b]. Thus by Rudin Theorem 7.17, there 
exists a differentiable function f : [a, b] → R such that fi → f uniformally 
and f ' → f ' 

i uniformally. 

I claim  that f ∈ B1. To prove this, we need  to show that f ' is bounded. Pick 
N sufficiently large that d(fN

' , f ') < 1. Since fN
'

 is bounded, there exists 
M > 0 such that |fN'  (x)| < M for all x ∈ [a, b]. But then 

|f '(x)| ≤ |f '(x) − fn
' (x)| + |fN'  (x)| < 1 + M

So f ' is bounded  and f ∈ B1

Finally, we need to show that fi → f in B1 . Let E > 0. Pick N suffi­
ciently large that n > N implies d(fn, f) < E/2 and d(fn

' , f ') < E, which we 
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  can do by uniform convergence. Then d1(fn, f) =  d(fn, f) + d(fn 
' , f ') < E,

so fn → f  in B1. 
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We will prove the following more general lemma, which will imply the result 

Lemma: Suppose (fn) is a sequence of functions from [a, b] → R, and 
fn → f uniformally. Suppose furthermore that for every p ∈ (a, b] the left 
limit fn(p−) exists for all n. Then the left limit f(−p) exists for all p ∈ (a, b]. 

A similar result holds for right limits f(p+) for p ∈ [a, b) with the same 
proof (after the obvious changes are made). 

Before we prove the Lemma, let us show how it implies our result. Let 
f : [a, b] → R be a step function, and p ∈ [a, b]. If p is not one of the finitely 
many ”step” points of f , then f is continuous at p, and so clearly the left 
and right limits f(p−) and f(p+) exist (and are in fact equal). If p happens 
to be one of the step points of f , there is some small E > 0 and c, d ∈ R such 
that for x ∈ (p − E, p), f(x) = c, while for x ∈ (p, p + E), f(x) = d. But then 
f(p−) = c and f(p+) = d, so the left and right limits both exist. 

Hence if (fn) is a uniformally convergent sequence of step functions, and 
p ∈ [a, b] the limits fn(p−) and fn(p+) exist, hence by the lemma so do the 
limits f(p−) and f(p+). 

Proof of Lemma: This argument is almost word for word the same as the 
proof of Rudin Theorem 7.11. Let p ∈ (a, b], and set An = fn(p−). We 
first want to show that (An) is Cauchy. Let E > 0. Since (fn) is uniformally 
convergent it is Cauchy, we there exists N ∈ N such that for n,m > N and 
x ∈ [a, b] we have 

|fn(x) − fm(x)| ≤ E 

Then letting x → p− (i.e. x approaches p from below) we have 

|An − Am| ≤ E 

Thus (An) is Cauchy, and hence converges to some number A 
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We need to show that A = f(p−), and in particular that f(p−) exists. 
Again let E > 0. For any x ∈ [a, b] and n ∈ N we have 

|f(x) − A| ≤ |f(x) − fn(x)| + |fn(x) − An| + |An − A| 

Since fn → f uniformally and An → A, we can pick n sufficiently large that 
for all x ∈ [a, b] 

E |fn(x) − f(x)| < 
3 

and 
E |A − An| < 
3 

Since fn(p−) = An, there exists δ > 0 such that for x ∈ (p − δ, p), 
E |fn(x) − An| < 
3 

. Putting these inequalties together, we see that for x ∈ (p − δ, p) we have 

|f(x) − A| ≤ E 

Which implies A = f(p−). 

3 
 e  Let np(x) = k
k=1 akx be any polynomial. Then if q(x) = (p(x) p( x))/2 = 

n  k
− −

k=1 bkx ,

e
 we have that bk = ak if k is odd, and bk = 0 if k is even. In

particular, q(x) is an odd polynomial. 

Now let f : [−1, 1] → R be any continuous function, not necessarily odd. By 
the Weierstrass theorem there exists a sequence of polynomials pn(x) with 
pn(x) → f(x) uniformally on [−1, 1]. 

If f, g : [−1, 1] → R are any two bounded functions, we obviously have 
supx∈[−1,1] |f(x)−g(x)| = supx [ 1,1] |f(−x)−g(∈ − −x)|. In particular, pn(−x) → 
f(−x) uniformally. Hence if we define qn(x) = (pn(x)−pn(−x))/2, then (qn) 
is a sequence of odd polynomials, and qn(x) → (f(x)−f(−x))/2 uniformally. 

However, if f is odd, then (f(x) − f(−x))/2 = (f(x) + f(x))/2 = f(x), 
so qn → f uniformally. 
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