
Multi­linear Algebra

Notes for 18.101


1 Linear algebra 

To read these notes you will need some background in linear algebra. In particular 
you’ll need to be familiar with the material in § 1–2 of Munkres and 1 of Spivak. §
In this section we will discuss a couple of items which are frequently, but not always, 
covered in linear algebra courses, but which we’ll need for our “crash course” in 
multilinear algebra in § 2–6. 

The quotient spaces of a vector space 

Let V be a vector space and W a vector subspace of V . A W ­coset is a set of the 
form 

v + W = {v + w , w ∈ W} . 

It is easy to check that if v1 − v2 ∈ W , the cosets, v1 + W and v2 + W , coincide while 
if v1 − v2 �∈ W , they are disjoint. Thus the W ­cosets decompose V into a disjoint 
collection of subsets of V . We will denote this collection of sets by V/W . 

One defines a vector addition operation on V/W by defining the sum of two cosets, 
v1 + W and v2 + W to be the coset 

(1.1) v1 + v2 + W 

and one defines a scalar multiplication operation by defining the scalar multiple of 
v + W by λ to be the coset 

(1.2) λv + W . 

It is easy to see that these operations are well defined. For instance, suppose v1+W = 
v1
� +W and v2+W = v2

� +W . Then v1−v� and v2− v� are in W ; so (v1+v2)− (v1+v�1 2 
�

2) 
is in W and hence v1 + v2 + W = v1

� + v2
� + W . 

These operations make V/W into a vector space, and one calls this space the 
quotient space of V by W . 

We define a mapping 

(1.3) π : V → V/W 

by setting π(v) = v + W . It’s clear from (1.1) and (1.2) that π is a linear mapping. 
Moreover, for every coset, v + W , π(v) = v + W ; so the mapping, π, is onto. Also 

1




� 

�� 

� 

� 

note that the zero vector in the vector space, V/W , is the zero coset, 0 + W = W . 
Hence v is in the kernel of π if v + W = W , i.e., v ∈ W . In other words the kernel of 
π is W . 

In the definition above, V and W don’t have to be finite dimensional, but if they 
are, then one can show 

(1.4) dim V/W = dim V − dim W . 

(A proof of this is sketched in exercises 1–3.) 

The dual space of a vector space 

We’ll denote by V ∗ the set of all linear functions, � : V R. If �1 and �2 are linear →
functions, their sum, �1 + �2, is linear, and if � is a linear function and λ is a real 
number, the function, λ�, is linear. Hence V ∗ is a vector space. One calls this space 
the dual space of V . 

Suppose V is n­dimensional, and let e1, . . . , en be a basis of V . Then every vector, 
v ∈ V , can be written uniquely as a sum 

v = c1v1 + · · ·+ cnvn ci ∈ R . 

Let 

(1.5) ei 
∗(v) = ci . 

If v = +cnen and v� = c� +c�nen then v+v� = (c1+c
� +(cn+cn

� )en,c1e1+· · · 1e1+· · · 1)e1+· · ·
so 

e∗ 
i (v + v�) = ci + c� = ei 

∗(v) + ei 
∗(v�) .i 

This shows that e∗ 
i (v) is a linear function of v and hence e∗ 

i ∈ V ∗. 

Claim: ei 
∗, i = 1, . . . , n is a basis of V ∗. 

Proof. First of all note that by (1.5) 

(1.6) ei 
∗(ej) =

1 , i = j
. 

0 , i = j 

If � ∈ V ∗ let λi = �(ei) and let �� = λie
∗. Then by (1.6) i 

(1.7) ��(ej) = λiei 
∗(ej) = λj = �(ej) , 

i.e., � and �� take identical values on the basis vectors, ej. Hence � = ��. 
Suppose next that λie

∗ = 0. Then by (1.6), with �� = 0; λj = 0. Hence the e∗’si j

are linearly independent. 
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Let V and W be vector spaces and 

(1.8) A : V W→ 

a linear map. Given � ∈ W ∗, the composition � A of A with the linear map � : W R◦ →
is linear, and hence is an element of V ∗. We will denote this element by A∗�, and we 
will denote by 

A∗ : W ∗ V ∗ → 

the map, � A∗�. It’s clear from the definition that → 

A∗(�1 + �2) = A∗�1 + A∗�2 

and that 
A∗λ� = λA∗� , 

i.e., that A∗ is linear. 

Definition. A∗ is the transpose of the mapping A. 
We will conclude this section by giving a matrix description of A∗. Let e1, . . . , en 

1, . . . , e
∗be a basis of V and f1, . . . , fm a basis of W ; let e∗ 
n and f1 

∗, . . . , f ∗ be the dual m 

bases of V ∗ and W ∗. Suppose A is defined in terms of e1, . . . , en and f1, . . . , fm by 
the m× n matrix, [ai,j ], i.e., suppose 

Aej = ai,j fi . 

Claim. A∗ is defined, in terms of f1 
∗, . . . , f ∗ and e∗ 

n by the transpose matrix, 1, . . . , e
∗ 

m 

[aj,i]. 

Proof. Let � 
A∗fi 

∗ = cj,ie
∗ 
j . 

Then � 
A∗fi 

∗(ej) = ck,ie
∗ 
k(ej) = cj,i 

k 

by (1.5). On the other hand 

A∗fi 
∗(ej) = fi 

∗(Aej) 

= aj,kfi 
∗(fk) = aj,i , 

k 

so aj,i = cj,i. 
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Exercises. 

1. Let V be an n­dimensional vector space and W a k­dimensional subspace. Show 
that there exists a basis, e1, . . . , en of V with the property that e1, . . . , ek is a 
basis of W . Hint: Induction on n − k. To start the induction suppose that 
n− k = 1. Let e1, . . . , en−1 be a basis of W and en any vector in V − W . 

2. In exercise 1 show that the vectors fi = π(ek+i), i = 1, . . . , n− k are a basis of 
V/W . Conclude that the dimension of V/W is n− k. 

3. In exercise 1 let U be the linear span of the vectors, ek+i, i = 1, . . . , n− k. 

Show that the map 

(1.9) U → V/W , u→ π(u) , 

is a vector space isomorphism, i.e., show that it maps U bijectively onto V/W . 1 

4. Let U , V and W be vector spaces and let A : V W and B : U V be linear → →
mappings. Show that (AB)∗ = B∗A∗. 

1This exercise shows that the notion of “quotient space”, which can be somewhat daunting when 
one first encounters it, is in essence no more complicated than the notion of “subspace”. 
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2 Tensors 

Let V be an n­dimensional vector space and let V k be the set of all k­tuples, (v1, . . . , vk), 
vi ∈ V . A function 

T : V k R→

is said to be linear in its ith variable if, when we fix vectors, v1, . . . , vi−1, vi+1, . . . , vk, 
the map 

(2.1) v ∈ V → T (v1, . . . , vi−1, v, vi+1, . . . , vk) 

is linear in V . If T is linear in its ith variable for i = 1, . . . , k it is said to be k­linear, 
or alternatively is said to be a k­tensor. We denote the set of all k­tensors by Lk(V ). 

Let T1 and T2 be functions on V k . It is clear from (2.1) that if T1 and T2 are 
k­linear, so is T1 +T2. Similarly if T is k­linear and λ is a real number, λT is k­linear. 
Hence Lk(V ) is a vector space. Note that for k = 1, “k­linear” just means “linear”, 
so L1(V ) = V ∗. 

We will next prove that this vector space is finite dimensional. Let 

I = (i1, . . . ik) 

be a sequence of integers with 1 ≤ ir ≤ n, r = 1, . . . , k. We will call such a sequence 
a multi­index of length k. For instance the multi­indices of length 2 are the square 
arrays of pairs of integers 

(i, j) , 1 ≤ i, j ≤ n 

and there are exactly n2 of them. 

Exercise. 

Show that there are exactly nk multi­indices of length k. 

Now fix a basis, e1, . . . , en, of V and for T ∈ Lk(V ) let 

(2.2) TI = T (ei1 , . . . , eik 
) 

for every multi­index of length k, I. 

Proposition 2.1. The TI ’s determine T , i.e., if T and T � are k­tensors and TI = T �
I 

for all I, then T = T �. 

Proof. By induction on n. For n = 1 we proved this result in § 1. Let’s prove that if 
this assertion is true for n− 1, it’s true for n. For each ei let Ti be the (k− 1)­tensor 
mapping 

(v1, . . . , vn−1) → T (v1, . . . , vn−1, ei) . 
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Then for v = c1e1 + · · · cnen, 

T (v1, . . . , vn−1, v) = ciTi(v1, . . . , vn−1) , 

so the Ti’s determine T . Now apply induction. 

The tensor product operation 

If T1 is a k­tensor and T2 is an �­tensor, one can define a k + �­tensor, T1 ⊗ T2, by 
setting 

(T1 ⊗ T2)(v1, . . . , vk+�) = T1(v1, . . . , vk)T2(vk+1, . . . , vk+�) . 

This tensor is called the tensor product of T1 and T2. Similarly, given a k­tensor, T1, 
an �­tensor T2 and an m­tensor T3, one can define a (k + �+ m)­tensor T1 ⊗ T2 ⊗ T3 

by setting 

(2.3)	 T1 ⊗ T2 ⊗ T3(v1, . . . , vk+�) 

= T1(v1, . . . , vk)T2(vk+1, . . . , vk+�)T3(vk+�+1, . . . , vk+�+m) . 

Alternatively, one can define (2.3) by defining it to be the tensor product of T1 ⊗ T2 

and T3 or the tensor product of T1 and T2 ⊗T3. It’s easy to see that both these tensor 
products are identical with (2.3): 

(2.4) (T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3) = T1 ⊗ T2 ⊗ T3 . 

We leave for you to check that if λ is a real number 

(2.5) λ(T1 ⊗ T2) = (λT1)⊗ T2 = T1 ⊗ (λT2) 

and that the left and right distributive laws are valid: For k1 = k2, 

(2.6) (T1 + T2)⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3 

and for k2 = k3 

(2.7)	 T1 ⊗ (T2 + T3) = T1 ⊗ T2 + T1 ⊗ T3 . 

A particularly interesting tensor product is the following. For i = 1, . . . , k let 
�i ∈ V ∗ and let 

(2.8) T = �1 ⊗ · · · ⊗ �k . 

Thus, by definition, 

(2.9)	 T (v1, . . . , vk) = �1(v1) . . . �k(vk) . 
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A tensor of the form (2.9) is called a decomposible k­tensor. These tensors, as we will 
see, play an important role in what follows. In particular, let e1, . . . , en be a basis of 
V and e∗ 

1, . . . , e
∗ the dual basis of V ∗. For every multi­index I of length k letn 

e∗ 
I = e∗ 

i1 
⊗ · · · ⊗ e∗ .ik 

Then if J is another multi­index of length k, 

1 , I = J 
(2.10) eI

∗(ej1 , . . . , ejk
) = 

0 , I = J 

by (1.6), (2.8) and (2.9). From (2.10) it’s easy to conclude 

Theorem 2.2. The e∗’s are a basis of Lk(V ).I

Proof. Given T ∈ Lk(V ), let 

T � = TIe
∗ 
I 

where the TI ’s are defined by (2.2). Then 

(2.11) T �(ej1 , . . . , ejk
) = TIeI

∗(ej1 , . . . , ejk
) = TJ 

by (2.10); however, by Proposition 2.1 the TJ ’s determine T , so T � = T . This proves 
that the eI

∗’s are a spanning set of vectors for Lk(V ). To prove they’re a basis, suppose 

CIe
∗ 
I = 0 

for constants, CI ∈ R. Then by (2.11) with T = 0, CJ = 0, so the e∗ 
I ’s are linearly 

independent. 

kAs we noted above there are exactly nk multi­indices of length k and hence n
basis vectors in the set, {e∗ 

I}, so we’ve proved 

kCorollary. dim Lk(V ) = n . 

The pull­back operation 

Let V and W be finite dimensional vector spaces and let A : V W be a linear 
mapping. If T ∈ Lk(W ), we define 

→ 

A∗T : V k R→

to be the function 

(2.12) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk) . 

It’s clear from the linearity of A that this function is linear in its ith variable for all i, 
and hence is a k­tensor. We will call A∗T the pull­back of T by the map, A. 
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Proposition 2.3. The map 

k(2.13) A∗ : L (V ) , T A∗T ,(W ) → Lk →

is a linear mapping. 

We leave this as an exercise. We also leave as an exercise the identity 

(2.14) A∗(T1 ⊗ T2) = A∗T1 ⊗ A∗T2 

for T1 ∈ Lk(W ) and T2 ∈ Lm(W ). Also, if U is a vector space and B : U V a→
linear mapping, we leave for you to check that 

(2.15) (AB)∗T = B∗(A∗T ) 

for all T ∈ Lk(W ). 

Exercises. 

1. Verify that there are exactly nk multi­indices of length k. 

2. Prove Proposition 2.3. 

3. Verify (2.14). 

4. Verify (2.15). 
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3 Alternating k­tensors 

We will discuss in this section a class of k­tensors which play an important role in 
multivariable calculus. In this discussion we will need some standard facts about the 
“permutation group”. For those of you who are already familiar with this object 
(and I suspect most of you are) you can regard the paragraph below as a chance to 
re­familiarize yourselves with these facts. 

Permutations 

Let be the k­element set:	 {1, 2, . . . , k}. A permutation of order k is a bijective k � � 
map, σ : k → k, Given two permutations, σ1 and σ2, their product, σ1σ2, is the 
composition of σ1 and σ2, i.e., the map, 

i→ σ2(σ1(i)) , 

and for every permutation, σ, one denotes by σ−1 the inverse permutation: 

σ(i) = j ⇔ σ−1(j) = i . 

Let�Sk be the set of all permutations of order k. One calls Sk the permutation group 
of k or, alternatively, the symmetric group on k letters. 

Check: 

There are k! elements in Sk. 

For every 1 ≤ i < j ≤ k, let τ	= τi,j be the permutation 

τ(i) = j 

(3.1)	 τ(j) = i 

τ(�) = � , � = i, j . 

τ is called a transposition, and if j = i+ 1, τ is called an elementary transposition. 

Theorem 3.1. Every permutation can be written as a product of finite numbers of 
transpositions. 

Proof. Induction on k: “k = 2” is obvious. The induction step: “k − 1” implies “k”: 
Given σ ∈ Sk, σ(k) = i ⇔ στik(k) = k. Thus στik is, in effect, a permutation of 

k−1. By induction, στik can be written as a product of transpositions, so 

σ = (στik)τik 

can be written as a product of transpositions. 
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Theorem 3.2. Every transposition can be written as a product of elementary trans­
positions. 

Proof. Let τ = τij, i < j. With i fixed, argue by induction on j. Note that 

τij = τj−1,jτi,j−1τj−1,j . 

Now apply induction to τi,j−1. 

The sign of a permutation 

Let x1, . . . , xk be the coordinate functions on Rk . For σ ∈ Sk we define 

(3.2)	 (−1)σ = 
xσ(i) − xσ(j) 

. 
xi − xji<j 

Notice that the numerator and denominator in this expression are identical up to sign. 
Indeed, if p = σ(i) < σ(j) = q, the term, xp − xq occurs once and just once in the 
numerator and once and just once in the denominator; and if q = σ(i) > σ(j) = p, the 
term, xp − xq, occurs once and just once in the numerator and its negative, xq − xp, 
occurs once and just once in the numerator. Thus 

(3.3)	 (−1)σ = ±1 . 

Claim: 

For σ, τ ∈ Sk 

(3.4) (−1)στ	 = (−1)σ(−1)τ . 

Proof. By definition, 

(−1)στ xστ(i) − xστ(j) 
= . 

xi − xji<j 

We write the right hand side as a product of 

(3.5)	
xσ(i) − xσ(j) 

= (−1)σ 

xi − xji<j 

and 

(3.6)	
xστ(i) − xσ(j) 

xσ(i) − xσ(j)i<j 
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For i < j, let p = σ(i) and q = σ(j) when σ(i) < σ(j) and let p = σ(j) and q = σ(i) 
when σ(j) < σ(i). Then 

xστ(i) − xστ(j) xτ(p) − xτ(q) 
= 

xσ(i) − xσ(j) xp − xq 

(i.e., if σ(i) < σ(j), the numerator and denominator on the right equal the numerator 
and denominator on the left and, if σ(j) < σ(i) are negatives of the numerator and 
denominator on the left). Thus (3.2) becomes 

xτ(p) − xτ(q) 
= (−1)τ . 

xp − xqp<q 

We’ll leave for you to check that if τ is a transposition, (−1)τ = −1 and to 
conclude from this: 

Proposition 3.3. If σ is the product of an odd number of transpositions, (−1)σ = −1 
and if σ is the product of an even number of transpositions (−1)σ = +1. 

Alternation 

Let V be an n­dimensional vector space and T ∈ Lk(v) a k­tensor. If σ ∈ Sk, let 
T σ ∈ Lk(V ) be the k­tensor 

(3.7) T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(n)) . 

Proposition 3.4. 1. If T = �1 ⊗ · · · ⊗ �k, �i ∈ V ∗ then T σ = �σ(1) ⊗ · · · ⊗ �σ(k). 

2. The map, T ∈ Lk(V ) → T σ ∈ Lk(V ) is a linear map. 

T τσ 3. (T σ)τ = . 

Proof. To prove 1, we note that by (3.7) 

(v1, . . . , vk)(�1 ⊗ · · · ⊗ �k)
σ

= �1(vσ−1(1)) �k(vσ−1(k)) .· · ·

Setting σ−1(i) = q, the ith term in this product is �σ(q)(vq); so the product can be 
rewritten as 

�σ(1)(v1) . . . �σ(k)(vk) 

or 
(�σ(1) ⊗ · · · ⊗ �σ(k))(v1, . . . , vk) . 

The proof of 2 we’ll leave as an exercise. 
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Proof of 3: By item 2, it suffices to check 3 for decomposible tensors. However, 
by 1 

k)
στ = �στ(1) ⊗ · · · ⊗ �στ(k)(�1 ⊗ · · · ⊗ �

τ(k))
σ .= (�τ(1) ⊗ · · · ⊗ �

Definition 3.5. T ∈ Lk(V ) is alternating if T σ = (−1)σT for all σ ∈ Sk. 

We will denote by Ak(V ) the set of all alternating k­tensors in Lk(V ). By item 2 
of Proposition 3.4 this set is a vector subspace of Lk(V ). 

It is not easy to write down simple examples of alternating k­tensors; however, 
there is a method, called the alternation operation, for constructing such tensors: 
Given T ∈ Lk(V ) let 

(3.8) Alt (T ) = (−1)τT τ . 
τ∈Sk 

We claim 

Proposition 3.6. For T ∈ Lk(V ) and σ ∈ Sk, 

1. Alt (T )σ = (−1)σ Alt (T ) 

2. if T ∈ Ak(V ) , Alt (T ) = k!T . 

3. Alt (T σ) = Alt (T )σ 

4. the map 
Alt : Lk (V ) , T → Alt (T )(V ) → Lk

is linear. 

Proof. To prove 1 we note: 

(T τσAlt T σ = (−1)τ ) 

= (−1)σ (−1)τσT τσ . 

But as τ runs over Sk, τσ runs over Sk, and hence the right hand side is (−1)σ Alt (T ). 

Proof of 2. If T ∈ Ak , 

Alt (T ) = (−1)τT τ 

= (−1)τ (−1)τT 

= k!T . 
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Proof of 3. � � 
Alt (T σ) = (−1)τT τσ = (−1)σ (−1)τσT τσ 

= (−1)σ Alt (T ) = Alt (T )σ . 

Finally, item 4 is an easy corollary of item 2 of Proposition 3.4. 

We will use this alternation operation to construct a basis for Ak(V ). First, 
however, we require some notation: 

Let I = (i1, . . . , ik) be a multi­index of length k. 

Definition 3.7. 1. I is repeating if ir = is for some r = s. 

2. I is strictly increasing if i1 < i2 < · · · < ir. 

3. For σ ∈ Sk, I
σ = (iσ(1), . . . , iσ(k)) . 

Remark: If I is non­repeating there is a unique σ ∈ Sk so that Iσ is strictly 
increasing. 

Let e1, . . . , en be a basis of V and let 

∗ 
I 

∗ 
ik 

∗ ⊗ · · · ⊗ ei1 
e = e

and 
∗)I .
ψI = Alt (e

Proposition 3.8. 1. ψIσ = (−1)σψI . 

2. If I is repeating, ψI = 0. 

3. If I and J are strictly increasing, 

1 I = J 
ψI(ej1 , . . . , ejk

) = . 
0 I = J 

σ∗)I
∗ ;σIProof. To prove 1 we note that (e
 = e so 

σ∗)I (−1)σ Alt (e
∗ )σI
∗)IAlt (e
 = Alt (e
 = . 

∗ 
I = e
∗ 

IrProof of 2: Suppose I = (i1, . . . , ik) with ir = is for r = s. Then if τ = τir,is , e
so 

ψI = ψIr = (−1)τψI = −ψI . 
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Proof of 3: By definition 

ψI(ej1 , . . . , ejk 
) = (−1)τ e∗ ( )e , . . . , ej jτI 1 k

. 

But by (2.10) 

∗ ( )e , . . . , eτ j jI 1 k

1 if Iτ = J 
= 

0 if Iτ = J
.(3.9) e


Thus if I and J are strictly increasing, Iτ is strictly increasing if and only if Iτ = I, 
and (3.9) is zero if and only if I = J . 

Now let T ∈ Ak . Then by Proposition 2.2, 

∗ ,J aJ ∈ R .T = aJe

Since 

k!T = Alt (T ), 
1 

T = ∗ )J =aJ Alt (e bJψJ . 
k! 

We can discard all repeating terms in this sum since they are zero; and for every 
non­repeating term, J , we can write J = Iσ, where I is strictly increasing, and hence 
ψJ = (−1)σψI . 

Conclusion: 

We can write T as a sum 

(3.10) T = cIψI , 

with I’s strictly increasing. 

Claim. 

The cI ’s are unique. 

Proof. For J strictly increasing 

(3.11) T (ej1 , . . . , ejk
) = cIψI(ej1 , . . . , ejk

) = cJ . 

By (3.10) the ψI ’s, I strictly increasing, are a spanning set of vectors for Ak(V ), and 
by (3.11) they are linearly independent, so we’ve proved 
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Proposition 3.9. The alternating tensors, ψI , I strictly increasing, are a basis for 
Ak(V ). 

Thus dim Ak(V ) is equal to the number of strictly increasing multi­indices, I, of 
length k. We leave for you as an exercise to show that this number is equal to � � 

n n! 
(3.12) 

k 
= 

(n− k)!k! 
= “n choose k” 

if 1 ≤ k ≤ n. 

Hint: Show that every strictly increasing multi­index of length k determines a 
k element subset of {1, . . . , n} and vice­versa. 

Note also that if k > n every multi­index 

I = (i1, . . . , ik) 

of length k has to be repeating: ir = is for some r = s since the ip’s lie on the interval 
1 ≤ i ≤ n. Thus by Proposition 3.8 

ψI = 0 

for all multi­indices of length k > 0 and 

(3.13) k = {0} .A

Exercises. 

1. Show that there are exactly k! permutations of order k. Hint: Induction on k: 
Let σ ∈ Sk, and let σ(k) = i, 1 ≤ i ≤ k. Show that στik leaves k fixed and 
hence is, in effect, a permutation of k−1. 

2. Prove that if τ ∈ Sk is a transposition, then (−1)τ = −1. 

3. Prove assertion 2 in Proposition 3.4. 

4. Prove that dim Ak(V ) is given by (3.13). 

5. Verify that for i < j − 1, 

τi,j = τj−1,jτi,j−1, τj−1,j . 

6. For k = 3 show that every one of the six elements of S3 is either a transposition 
or can be written as a product of two transpositions. 

7. Let σ ∈ Sk be the “cyclic” permutation


σ(i) = i+ 1 , i = 1, . . . , k − 1


and σ(k) = 1. Show explicitly how to write σ as a product of transpositions 
and compute (−1)σ . Hint: Same hint as in exercise 1. 
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4 The space, Λk(V ∗) 

In 3 we showed that the image of the alternation operation, Alt : L k(V )§
k	

k(V ) → L
is A (V ). In this section we will compute the kernel of Alt . 

Definition 4.1. A decomposible k­tensor �1 ⊗ · · · ⊗ �k, �i ∈ V ∗, is redundant if for 
some index, i, �i = �i+1. 

Let Lk be the linear span of the set of redundant k­tensors. 
Note that for k = 1 the notion of redundant doesn’t really make sense; a single 

vector � ∈ L1(V ∗) can’t be “redundant” so we decree 

1(V ) = {0} .I

Proposition 4.2. If T ∈ Ik, then Alt (T ) = 0. 

Proof. Let T = �k⊗ ⊗�k with �i = �i+1. Then if τ = τi,i+1, T
τ = T and (−1)τ = −1.· · ·

Hence Alt (T ) = Alt (T σ) = Alt (T )σ = −Alt (T ); so Alt (T ) = 0. 

kTo simplify notation let’s abbreviate Lk(V ), Ak(V ) and Ik(V ) by Lk , Ak and I . 

Proposition 4.3. If T ∈ Ir and T � s then T ⊗ T � and T � ⊗ T are in Ir+s .∈ L

Proof. We can assume that T and T � are decomposible, i.e., T = �1 ⊗ · · · ⊗ �r and 
T � = �� � and that T is redundant: �i = �i+1. Then s1 ⊗ · · · ⊗ �


T ⊗ T � = � �

s�1 ⊗ · · · �i−1 ⊗ �i ⊗ �i ⊗ · · · �r ⊗ �1 ⊗ · · · ⊗ �

is redundant and hence in Ir+s . The argument for T � ⊗ T is similar. 

Proposition 4.4. If T ∈ Lk and σ ∈ Sk, then 

(4.1)	 T σ = (−1)σT + S 

where S is in Ik . 

Proof. We can assume T is decomposible, i.e., T = �1 ⊗ · · · ⊗ �k. Let’s first look at 
the simplest possible case: k = 2 and σ = τ1,2. Then 

T σ − (−1)σT	 = �1 ⊗ �2 + �2 ⊗ �1 

= ((�1 + �2)⊗ (�1 + �2)− �1 ⊗ �1 − �2 ⊗ �2)/2 , 

and the right hand side is decomposible, and hence in I2 . Next let k be arbitrary 
and σ = τi,i+1. If T1 = �1 ⊗ · · · ⊗ �i−2 and T2 = Then �i+2 ⊗ · · · ⊗ �k. 

T − (−1)σT = T1 ⊗ (�i ⊗ �i+1 + �i+1 ⊗ �i)⊗ T2 

16 
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is in Ik by Proposition 4.3 and the computation above.

The general case: By Theorem 3.2, σ can be written as a product of m elementary

transpositions, and we’ll prove (4.1) by induction on m.


We’ve just dealt with the case m = 1. 
The induction step: “m−1” implies “m”. Let σ = τβ where β is a product of m−1 
elementary transpositions and τ is an elementary transposition. Then 

T σ = (T β)τ = (−1)τT β + · · · 
= (−1)τ (−1)βT + · · · 
= (−1)σT + · · · 

where the “dots” are elements of Ik, and the induction hypothesis was used in line 2. 

Corollary. If T ∈ Lk, then 

(4.2) Alt (T ) = k!T + W , 

where W is in Ik . 

Proof. By definition Alt (T ) = (−1)σT σ, and by Proposition 4.4, T σ = (−1)σT + 
Wσ, with Wσ ∈ Ik . Thus, 

Alt (T ) = (−1)σ(−1)σT + (−1)σWσ 

= k!T + W 

where W = (−1)σWσ. 

Corollary. Ik is the kernel of Alt . 

Proof. We’ve already proved that if T ∈ Ik, Alt (T ) = 0. To prove the converse 
assertion we note that if Alt (T ) = 0, then by (4.2) 

T = 1 W .
k!

−

with W ∈ Ik . 

Putting these results together we conclude: 

Theorem 4.5. Every element, T , of Lk can be written uniquely as a sum, T = T1+T2 
kwhere T1 ∈ Ak and T2 ∈ I . 

17
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Proof. By (4.2), T = T1 + T2 with 

T1 = 1 
k! 

Alt (T ) 

and 

T2 = 
k
1
!
W .−

To prove that this decomposition is unique, suppose T1 + T2 = 0, with T1 ∈ Ak and 
. Then T2 ∈ Ik 

0 = Alt (T1 + T2) = k!T1 

so T1 = 0, and hence T2 = 0. 

Let 

k k(4.3) Λk(V ∗) = L (V ∗)/I (V ∗) , 

i.e., let Λk = Λk(V ∗) be the quotient of the vector space Lk by the subspace Ik of 
k . By (1.3) one has a linear map: 

(4.4) π : Lk Λk , T→ → T + Ik 

which is onto and has Ik as kernel. We claim: 

Theorem 4.6. The map, π, maps Ak bijectively onto Λk . 

kProof. By Theorem 4.5 every Ik coset, T + Ik, contains a unique element T1 of A . 
Hence, for every element of Λk there is a unique element of Ak which gets mapped 
onto it by π. 

kRemark. Since Λk and A are isomorphic as vector spaces many treatments of mul­
tilinear algebra avoid mentioning Λk, reasoning that Ak is a perfectly good substitute 
for it and that one should, if possible, not make two different definitions for what 
is essentially the same object. This is a justifiable point of view (and is the point 
of view taken by Spivak and Munkres2). There are, however, some advantages to 
distinguishing between Ak and Λk, as we’ll see in § 5. 

Exercises. 

1. A k­tensor T ∈ Lk(V ) is symmetric if T σ = T for all σ ∈ Sk. Show that the set 
k(V ) of symmetric k tensors is a vector subspace of Lk(V ).S

2and by Guillemin–Pollack in their book, Differential Topology 
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2. Let e1, . . . , en be a basis of V . Show that every symmetric 2­tensor is of the 
form � 

aije
∗ 
i ⊗ e∗ 

j , 

where qi,j = aj,i and e∗ 
1, . . . , e

∗ are the dual basis vectors of V ∗.n 

3. Show that if T is a symmetric k­tensor, then for k ≥ 2, T is in Ik . Hint: Let σ 
be a transposition and deduce from the identity, T σ = T , that T has to be in 
the kernel of Alt . 

4. Warning: In general Sk(V ) = Ik(V ). Show, however, that if k = 2 these two 
spaces are equal. 

5. Conclude from exercise 4 that if T ∈ Ik then T can be written as a sum 

k

T
(r) ⊗ T

(r) ⊗ T
(r) 

1 2 3 

r=0 

where T1
(1) ∈ Lr(V ), T

(r) ∈ S2(V ) and T
(r) 

.2 3 ∈ Lk−r−2 
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5 The wedge product 

The tensor algebra operations on the spaces Lk(V ) which we discussed in Sections 2 
and 3 (i.e., the “tensor product operation” and the “pull­back” operation), give rise 
to similar operations on the spaces Λk . We will discuss in this section the analogue 
of the tensor product operation. As in § 4 we’ll abbreviate Lk(V ) to Lk and Λk(V ) 
to Λk when it’s clear which “V ” is intended. 

Given ωi ∈ Λki , where i = 1, 2, we can by (4.4) find Ti ∈ Lki with ωi = π(Ti). 
Then T1 ⊗ T2 ∈ Lk1+k2 . Let 

(5.1) ω1 ∧ ω2 = π(T1 ⊗ T2) ∈ Λk1+k2 . 

Claim. 

This wedge product is well defined, i.e., doesn’t depend on our choices of T1 and T2. 

k1Proof. Let π(T1) = π(T1
�) = ω1. Then T � = T1 + W1 for some W1 ∈ I , so 1 

T1
� ⊗ T2 = T1 ⊗ T2 + W1 ⊗ T2 . 

But W1 ∈ Ik1 implies W1 ⊗ T2 ∈ Ik1+k2 and this implies: 

π(T1
� ⊗ T2) = π(T1 ⊗ T2) . 

A similar argument shows that (5.1) is well­defined independent of the choice of T2. 

More generally let ωi ∈ Λki , i = 1, 2, 3, and let ωi = π(Ti), Ti ∈ Lki . Define 

ω1 ∧ ω2 ∧ ω3 ∈ Λk1+k2+k3 

by setting 
ω1 ∧ ω2 ∧ ω3 = π(T1 ⊗ T2 ⊗ T3) . 

As above it’s easy to see that this is well­defined independent of the choice of T1, T2 

and T3. It is also easy to see that this triple wedge product is just the wedge product 
of ω1 ∧ ω2 with ω3 or, alternatively, the wedge product of ω1 with ω2 ∧ ω3, i.e., 

(5.2) ω1 ∧ ω2 ∧ ω3 = (ω1 ∧ ω2) ∧ ω3 = ω1 ∧ (ω2 ∧ ω3). 

We leave for you to check: 
For λ ∈ R 

(5.3) λ(ω1 ∧ ω2) = (λω1) ∧ ω2 = ω1 ∧ (λω2) 
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and verify the two distributive laws: 

(5.4) (ω1 + ω2) ∧ ω3 = ω1 ∧ ω3 + ω2 ∧ ω3 

and 
(5.5) 

ω1 ∧ (ω2 + ω3) = ω1 ∧ ω2 + ω1 ∧ ω3 . 

As we noted in § 4, Ik = {0} for k = 1, i.e., there are no non­zero “redundant” 
k tensors in degree k = 1. Thus 

1(5.6) Λ1(V ∗) = V ∗ = L (V ∗). 

A particularly interesting example of a wedge product is the following.

Let �i ∈ V ∗ = Λ1(V ∗), i = 1, . . . , k. Then if T =
�1 ⊗ · · · ⊗ �k, 

(5.7) �1 ∧ · · · ∧ �k = π(T ) ∈ Λk(V ∗) . 

We will call (5.7) a decomposible element of Λk(V ∗). 
We will next show that the permutation operation on k tensors 

kT σT ∈ Lk → ∈ L

extends to a permutation operation on Λk . To see this we first note that if T ∈ Ik , 
T σ k .∈ I

Proof. If T = �1⊗· · ·⊗�k is a redundant k­tensor, i.e., �i = �i+1, for some multi­index, 
i, and τ = τi,i+1, then T = T τ and (−1)τ = −1 so 

T σ = T τσ = (−1)τσT + · · · 
= (−1)τ (−1)σT + · · · 
= = −T σ + · · · 

where the “dots” indicate elements of Ik . Thus T σ k . Since every element of Ik∈ I
is a sum of redundant tensors this proves the assertion above. 

Now let ω be in Λk . Then ω = π(T ) for some T ∈ Lk, and we define 

(5.8) ωσ = π(T σ) . 

Claim: 

This definition makes sense: ωσ is well­defined.


Proof. Suppose ω = π(T ) = π(T1). Then T1 = T + W , for some W ∈ Ik and

kT σ = T σ + W σ . But W σ is in I , so 

ωσ = π(T1 
σ) = π(T σ) . 
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Example. 

Let 
ω = �1 ∧ · · · ∧ �k = π(�1 ⊗ · · · ⊗ �k) 

with �i ∈ V ∗. Then 

(5.9) ωσ = π(�σ(1) ⊗ · · · ⊗ �σ(k)) 

= �σ(1) ∧ · · · ∧ �σ(k) . 

We will next prove that 

(5.10) ωσ = (−1)σω . 

Proof. Let ω = π(T ) for T ∈ Lk . Then 

ωσ = π(T σ) . 

But 

T σ = (−1)σT + W , 

for some W in Ik, so 

ωσ = π(T σ) = (−1)σπ(T ) = (−1)σω . 

Corollary. For �1, . . . , �k ∈ V ∗ 

(5.11)	 �σ(1) ∧ · · · ∧ �σ(k) = (−1)σ�1 ∧ · · · ∧ �k . 

For instance, 

(5.12)	 �1 ∧ �2 = −�2 ∧ �1 . 

Exercise: 

Show that if ω1 ∈ Λr and ω2 ∈ Λs then 

(5.13)	 ω1 ∧ ω2 = (−1)rsω2 ∧ ω1 . 

Hint:	 It suffices to prove this for decomposible elements, i.e., for 

ω1 = r .�1 ∧ · · · ∧ �

Now make rs applications of the formula (5.12). 

1, . . . , e
∗Let e1, . . . , en be a basis of V and let e∗ 
n be the dual basis of V ∗. For every 

multi­index I of length k, let 

(5.14)	 ẽ∗ 
I = e∗ 

i1 
∧ · · · ∧ e∗ = π(eI

∗) .ik 
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Theorem 5.1. The elements (5.14), with I strictly increasing, are basis vectors of 
Λk . 

Proof. The elements 

∗) , I strictly increasing, IψI = Alt (e

are basis vectors of Ak by Proposition 3.6; so their images, π(ψI), are a basis of Λk . 
But 

π(ψI) = π (−1)σ(e σ∗)I

(−1)σ(ẽ σ∗)I= 

(−1)σ ∗ 
I(−1)σẽ= 

!ẽ∗ .Ik
= 

Exercises: 

1. Prove the assertions (5.3), (5.4) and (5.6). 

2. Verify the multiplication law, (5.13) for wedge product. 
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6 The pull­back operation on Λk 

Let V and W be vector spaces and let A be a linear map of V into W . Given a 
k­tensor, T ∈ Lk(W ), the pull­back A∗T is the k­tensor 

(6.1) A∗T (v1, . . . , vk) = T (Av1, . . . , Avk)


in Lk(V ) (See 2, equation 2.12). In this section we’ll show how to define a similar
§
pull­back operation on Λk . 

Lemma 6.1. If T ∈ Ik(W ), then A∗T ∈ Ik(V ). 

Proof. It suffices to verify this when T is a redundant k­tensor, i.e., a tensor of the 
form 

T = �1 ⊗ · · · ⊗ �k 

where �r ∈ W ∗ and �i = �i+1 for some index, i. But by (2.14) 

A∗T = A∗�1 ⊗ · · · ⊗ A∗�k 

and the tensor on the right is redundant since A∗�i = A∗�i+1. 

Now let ω be an element of Λk(W ∗) and let ω = π(T ) where T is in Lk(W ). We 
define 

(6.2)	 A∗ω = π(A∗T ) . 

Claim: 

The left hand side of (6.2) is well­defined. 

Proof. If ω = π(T ) = π(T �), then T = T � + S for some S ∈ Ik(W ), and A∗T � = 
A∗T + A∗S. But A∗S ∈ Ik(V ), so 

π(A∗T �) = π(A∗T ) . 

Proposition 6.2.	 (i) The map 

(6.3) A∗ : Λk(W ∗) → Λk(V ∗) ,


mapping ω to A∗ω is linear.


(ii)	 If ωi ∈ Λki(W ), i = 1, 2, then


A∗(ω1 ∧ ω2) = A∗ω1 ∧ A∗ω2 .
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(iii) If U is a vector space and B : U → V a linear map, then for ω ∈ Λk(W ∗), 

(6.4) B∗A∗ω = (AB)∗ω . 

We’ll leave the proof of these three assertions as exercises. Hint: They follow 
immediately from the analogous assertions for the pull­back operation on tensors 
(See (2.14) and (2,15)). 

As an application of the pull­back operation we’ll show how to use it to define 
the notion of determinant for a linear mapping. Let V be an n­dimensional vector 

n space. Then dim Λn(V ∗) = 
n 

= 1; i.e., Λn(V ∗) is a one­dimensional vector space. 
Thus if A : V → V is a linear mapping, the induced pull­back mapping: 

A∗ : Λn(V ∗) → Λn(V ∗) , 

is just “multiplication by a constant”. We denote this constant by det(A) and call it 
the determinant of A, Hence, by definition, 

(6.5) A∗ω = det(A)ω 

for all ω in Λn(V ∗). From (6.5) it’s easy to derive a number of basic facts about 
determinants. 

Proposition 6.3. If A and B are linear mappings of V into V , then 

(6.6) det(AB) = det(A) det(B) . 

Proof. By (6.4) and 

(AB)∗ω = det(AB)ω 

= B∗(A∗ω) = det(B)A∗ω 

= det(B) det(A)ω , 

so, det(AB) = det(A) det(B). 

Proposition 6.4. If I : V → V is the identity map, Iv = v for all v ∈ V , then 
det(I) = 1. 

We’ll leave the proof as an exercise. Hint: I∗ is the identity map on Λn(V ∗). 

Proposition 6.5. If A : V → V is not onto, then det(A) = 0. 

Proof. Let W be the image of A. Then if A is not onto, the dimension of W is less 
than n, so Λn(W ∗) = {0}. Now let A = IW B where IW is the inclusion map of W 
into V and B is the mapping A regarded as a mapping from V to W . Thus if ω is in 
Λn(V ∗), then by (6.4) 

A∗ω = B∗I∗ 
W ω 

and since I∗ ω is in Λn(W ) it is zero. W 
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We will derive by wedge product arguments the familiar “matrix formula” for 
the determinant. Let V and W be n­dimensional vector spaces and let e1, . . . , en 

be a basis for V and f1, . . . , fn a basis for W . From these bases we get dual bases, 
e∗ 
1, . . . , e

∗ and f1 
∗, . . . , f ∗, for V ∗ and W ∗. Moreover, if A is a linear map of V into Wn n

and [ai,j ] the n × n matrix describing A in terms of these bases, then the transpose 
map, A∗ : W ∗ V ∗, is described in terms of these dual bases by the n×n transpose →
matrix, i.e., if � 

Aej = ai,j fi , 

then � 
A∗f ∗ 

j = aj,ie
∗ 
i . 

(See § 1.) Consider now A∗(f ∗ 
n). By (6.3) 1 ∧ · · · ∧ f ∗ 

n) = A∗f ∗ 
nA∗(f1 

∗ ∧ · · · ∧ f ∗ � 1 
∧ · · · ∧ A∗f ∗ 

= (a1,k1e
∗ e∗ )knk1

) ∧ · · · ∧ (an,kn 

the sum being over all k1, . . . , kn, with 1 ≤ kr ≤ n. Thus, 

n) = a1,k1 . . . an,kn e
∗ 

kn 
.A∗(f1 

∗ ∧ · · · ∧ f ∗ 
k1 
∧ · · · ∧ e∗ 

If the multi­index, k1, . . . , kn, is repeating, then e∗ is zero, and if it’s not knk1 
∧ · · · ∧ e∗ 

repeating then we can write 

ki = σ(i) i = 1, . . . , n 

for some permutation, σ, and hence we can rewrite A∗(f1 
∗ ∧ · · · ∧ f ∗ 

n) as the sum over 
σ ∈ Sn of 

a1,σ(1) · · · an,σ(n) (e∗ 
n)σ .1 ∧ · · · ∧ e∗ 

But 
(e∗ 

n)σ = (−1)σ e∗ 
n1 ∧ · · · ∧ e∗ 

1 ∧ · · · ∧ e∗ 

so we get finally the formula 

(6.7) A∗(f1 
∗ ∧ · · · ∧ f ∗ 

1 ∧ · · · ∧ e∗ 
n) = det[ai,j ]e

∗ 
n 

where 

(6.8) det[ai,j ] = (−1)σ an,σ(n)a1,σ(1) · · ·

summed over σ ∈ Sn. The sum on the right is (as most of you know) the determinant 
of [ai,j ]. 

Notice that if V = W and ei = fi, i = 1, . . . , n, then ω = e∗ 
n = f1 

∗ ∧· · ·∧f ∗ 
n,1∧· · ·∧e∗ 

hence by (6.5) and (6.6), 

(6.9) det(A) = det[ai,j ] . 
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Exercises. 

1. Verify the three assertions of Proposition 6.2. 

2. Deduce from Proposition 6.5 a well­known fact about determinants of n × n 
matrices: If two columns are equal, the determinant is zero. 

3. Deduce	 from Proposition 6.3 another well­known fact about determinants of 
n× n matrices: If one interchanges two columns, then one changes the sign of 
the determinant. 

Hint: Let e1, . . . , en be a basis of V and let B : V → V be the linear mapping 
Bei = ej, bej = ei and Be� = e�, � = i, j. What is B∗(e∗ 

n)?�	 1 ∧ · · · ∧ e∗ 

4. Deduce from Propositions 6.3 and 6.4 another well­known fact about determi­
nants of n × n matrix. If [bi,j ] is the inverse of [ai,j ], its determinant is the 
inverse of the determinant of [ai,j ]. 

5. Extract from (6.8) a well­known formula for determinants of 2 × 2 matrices: 

a11 , a12det = a11a22 − a12a21 . a21 , a22 
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7 Orientations 

We recall from freshman calculus that if � ⊆ R2 is a line through the origin, then 
� − {0} has two connected components and an orientation of � is a choice of one of 
these components (as in the figure below). 


� 

0 



•

More generally, if L is a one­dimensional vector space then L −{0} consists of two 
components: namely if v is an element of L − [0}, then these two components are 

L1 = {λv, λ > 0}


and


L2 = {λv, λ < 0} . 

An orientation of L is a choice of one of these components. Usually the component 
chosen is denoted L+, and called the positive component of L − {0} and the other 
component, L−, the negative component of L − {0}. 

Definition 7.1. A vector, v ∈ L, is positively oriented if v is in L+. 

More generally still, let V be an n­dimensional vector space. Then L = Λn(V ∗) is 
one­dimensional, and we define an orientation of V to be an orientation of L. One 
important way of assigning an orientation to V is to choose a basis, e1, . . . , en of V . 
Then, if e∗ 

n is the dual basis, we can orient Λn(V ∗) by requiring that e∗ 
1, . . . , e

∗ 
1∧· · ·∧e∗ 

n 

be in the positive component of Λn(V ∗). If V has already been assigned an orientation 
we will say that the basis, e1, . . . , en, is positively oriented if the orientation we just 
described coincides with the given orientation. 

Suppose that e1, . . . , en and f1, . . . , fn are bases of V and that 

(7.1) ej = ai,j,fi . 

Then by (6.7) 
= det[ai,j ]e

∗ 
n nf1 

∗ ∧ · · · ∧ f ∗ 
1 ∧ · · · ∧ e∗ 

so we conclude: 

Proposition 7.2. If e1, . . . , en is positively oriented, then f1, . . . , fn is positively ori­
ented if and only if det[ai,j ] is positive. 
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Corollary 7.3. If e1, . . . , en is a positively oriented basis of V , the basis: e1, . . . , ei−1, 
−ei, ei+1, . . . , en is negatively oriented. 

Now let V be a vector space of dimension n > 1 and W a subspace of dimen­
sion k < n. We will use the result above to prove the following important theorem. 

Theorem 7.4. Given orientations on V and V/W , one gets from these orientations 
a natural orientation on W . 

Remark. What we mean by “natural’ will be explained in the course of the proof. 

Proof. Let r = n − k and let π be the projection of V onto V/W . By exercises 1 
and 2 of §1 we can choose a basis e1, . . . , en of V such that er+1, . . . , en is a basis of 
W and π(e1), . . . , π(er) a basis of V/W . Moreover, replacing e1 by −e1 if necessary 
we can assume by Corollary 7.3 that π(e1), . . . , π(er) is an oriented basis of V/W and 
replacing en by −en if necessary we can assume that e1, . . . , en is an oriented basis of 
V . Now assign to W the orientation associated with the basis er+1, . . . , en. 

Let’s show that this assignment is “natural” (i.e., doesn’t depend on our choice 
of e1, . . . , en). To see this let f1, . . . , fn be another basis of V with the properties 
above and let A = [ai,j ] be the matrix (7.1) expressing the vectors e1, . . . , en as linear 
combinations of the vectors f1, . . . fn. This matrix has to have the form 

B C 
(7.2) A = 

0 D 

where B is the r × r matrix expressing the basis vectors π(e1), . . . , π(er) of V/W as 
linear combinations of π(f1), . . . , π(fr) and D the k × k matrix expressing the basis 
vectors er+1, . . . , en of W as linear combinations of fr+1, . . . , fn. Thus 

det(A) = det(B) det(D) . 

However, by Proposition 7.2, det A and det B are positive, so det D is positive, and 
hence if er+1, . . . , en is a positively oriented basis of W so is fr+1, . . . , fn. 

As a special case of this theorem suppose dim W = n − 1. Then the choice of a 
vector v ∈ V − W gives one a basis vector π(v) for the one­dimensional space V/W 
and hence if V is oriented, the choice of v gives one a natural orientation on W . 

Next let Vi, i = 1, 2 be an oriented n­dimensional vector space and A : V1 → V2 

a bijective linear map. A is orientation­preserving if, for ω ∈ Λn(V2 
∗)+, A∗ω is in 

Λn(V ∗ 
+)+. For example if V1 = V2 then A∗ω = det(A)ω so A is orientation preserving 

if and only if det(A) > 0. The following proposition we’ll leave as an exercise. 

Proposition 7.5. Let Vi, i = 1, 2, 3 be oriented n­dimensional vector spaces and 
Ai : Vi → Vi+1, i = 1, 2 bijective linear maps. Then if A1 and A2 are orientation 
preserving, so is A2 ◦ A1. 
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Exercises. 

1. Prove Corollary 7.3. 

2. Show that the argument in the proof of Theorem 7.4 can be modified to prove 
that if V and W are oriented then these orientations induce a natural orientation 
on V/W . 

3. Similarly show that if	W and V/W are oriented these orientations induce a 
natural orientation on V . 

4. Let e1, . . . , en be the standard basis vectors of Rn . The standard orientation of 
Rn is, by definition, the orientation associated with this basis. Show that if W 
is the subspace of Rn defined by the equation, x1 = 0, and v = e1 �∈ W then 
the natural orientation of W associated with v and the standard orientation of 
Rn coincide with the orientation given by the basis vectors, e2, . . . , en of W . 

5. Let V be an oriented n­dimensional vector space and W an (n− 1)­dimensional 
subspace.	 Show that if v and v� are in V − W then v� = λv + w, where w is in 

Show that v and v� give rise to the same orientation of WW and λ ∈ R − {0}.

if and only if λ is positive.


6. Prove Proposition 7.5. 

7. A key step in the proof of Theorem 7.4 was the assertion that the matrix A 
expressing the vectors ei as linear combinations of the vectors fi had to have 
the form (7.2). Why is this the case? 
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