Problem set 3 due Nov. 18

- (1) In the MLA notes, §3, Exercise 7.
- (2) In the MLA notes, §4, Exercise 5.
- (3) Let V be a 3-dimensional vector space, $\langle v, w \rangle$ an inner product on V and $\Omega \in \Lambda^3(V^*), \Omega \neq 0$.
 - (a) Given $\mu \in \Lambda^2(V^*)$ show that there exists a unique vector, $v_{\mu} \in V$, such that for all $\ell \in V^*$:

$$\mu \wedge \ell = \ell(v_{\mu})\Omega. \tag{**}$$

Hint: It's clear that $\mu \wedge \ell = c_{\ell} \Omega$ for some constant, c_{ℓ} , depending on ℓ . Show that this constant depends linearly on ℓ . Then show that there exists a unique vector $v_{\mu} \in V$ with the property:

$$c_{\ell} = \ell(v_{\mu})$$

for all $\ell \in V^*$.

(b) For $v \in V$, let $\ell_v \in V^*$ be the linear functional

$$w \in V \to \langle v, w \rangle$$
.

Show how to define a cross product on V by requiring that

$$v_1 \times v_2 = v_\mu \Leftrightarrow \mu = \ell_{v_1} \wedge \ell_{v_2}$$
.

Show that this cross product is linear in v_1 and v_2 and satisfies $v_1 \times v_2 = -v_2 \times v_1$.

- (c) Let $V = \mathbb{R}^3$. Show that if $\langle v, w \rangle$ is the Euclidean inner product on \mathbb{R}^3 , e_1 , e_2 , and e_3 , the standard basis vectors of \mathbb{R}^3 , and $\Omega = e_1 \wedge e_2 \wedge e_3$ the standard volume form, then this cross product is the *standard* cross product.
- (4) Let U be an open subset of \mathbb{R}^3 and let

$$\mu_1 = dx_2 \wedge dx_3$$

$$\mu_2 = dx_3 \wedge dx_1$$

and

$$\mu_3 = dx_1 \wedge dx_2.$$

(a) If $f: U \to \mathbb{R}$ is a function of class C^1 show that $df = G_1 dx_1 + G_2 dx_2 + G_3 dx_3$ where $G = (G_1, G_2, G_3) = \operatorname{grad} f$.

- (b) If $\omega = F_1 dx_1 + F_2 dx_2 + F_3 dx_3$ is a one-form on U of class C^1 show that $d\omega = G_1\mu_1 + G_2\mu_2 + G_3\mu_3$ where G = curl F.
- (c) If $\omega = F_1\mu_1 + F_2\mu_2 + F_3\mu_3$ is a two-form on U of class C^1 show that $d\omega = g\,dx_1 \wedge dx_2 \wedge dx_3$ where $g = \operatorname{div}(F)$.