
Lecture 1


1 Review of Topology 

1.1 Metric Spaces 

Definition 1.1. Let X be a set. Define the Cartesian product X × X = { (x, y) :

x, y ∈ X} .


Definition 1.2. Let d : X × X R be a mapping. The mapping d is a metric on
→
X if the following four conditions hold for all x, y, z ∈ X: 

(i) d(x, y) = d(y, x), 

(ii) d(x, y) ≥ 0, 

(iii) d(x, y) = 0 ⇐⇒ x = y, and 

(iv) d(x, z) ≤ d(x, y) + d(y, z). 

Given a metric d on X, the pair (X, d) is called a metric space. 

Suppose d is a metric on X and that Y ⊆ X. Then there is an automatic metric 
dY on Y defined by restricting d to the subspace Y × Y , 

dY = d Y × Y. (1.1) | 
Together with Y , the metric dY defines the automatic metric space (Y, dY ). 

1.2 Open and Closed Sets 

In this section we review some basic definitions and propositions in topology. We 
review open sets, closed sets, norms, continuity, and closure. Throughout this section, 
we let (X, d) be a metric space unless otherwise specified. 

One of the basic notions of topology is that of the open set. To define an open 
set, we first define the �­neighborhood. 

Definition 1.3. Given a point xo ∈ X, and a real number � > 0, we define 

U(xo, �) = { x ∈ X : d(x, xo) < �} . (1.2) 

We call U(xo, �) the �­neighborhood of xo in X. 

Given a subset Y ⊆ X, the �­neighborhood of xo in Y is just U(xo, �) ∩ Y . 

Definition 1.4. A subset U of X is open if for every xo U there exists a real ∈
number � > 0 such that U(xo, �) ⊆ U . 
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We make some propositions about the union and intersections of open sets. We 
omit the proofs, which are fairly straightforward. 

The following Proposition states that arbitrary unions of open sets are open. 

Proposition 1.5. Let {Uα, α ∈ I} be a collection of open sets in X, where I is just 
a labeling set that can be finite or infinite. Then, the set 

 

Uα is open. 
α∈I 

The following Corollary is an application of the above Proposition. 

Corollary 1. If Y ⊂ X and A is open in Y (w.r.t. dY ), then there exists on open 
set U in X such that U ∩ Y = A. 

Proof. The set A is open in Y . So, for any p ∈ A there exists an �p > 0 such that 
U(p, �p)∩ Y ⊆ A. We construct a set U containing A by taking the union of the sets 
U(p, �p) over all p in A, 

 

U = U(p, �p). (1.3) 
p∈A 

For every p ∈ A, we have U(p, �p)∩Y ⊆ A, which shows that U∩Y ⊆ A. Furthermore, 
the union is over all p ∈ A, so A ⊆ U , which implies that A ⊆ U ∩ Y . This shows 
that U ∩ Y = A. To conclude the proof, we see that U is open by the openness of the 
U(p, �p) and the above theorem. 

The following Proposition states that finite intersections of open sets are open. 

Proposition 1.6. Let {Ui, i = 1, . . . , N} be a finite collection of open sets in X. 
Then the set 

i=N

Ui is open. 
i=1 

cDefinition 1.7. Define the complement of A in X to be A = X − A = {x ∈ X : 
x /∈ A}. 

We use the complement to define closed sets. 

Definition 1.8. The set A is closed in X if Ac is open in X. 

1.3 Metrics on Rn 

For most of this course, we will only consider the case X = Rn or X equals certain 
subsets of Rn called manifolds, which we will define later. 

There are two interesting metrics on Rn . They are the Euclidean metric and 
the sup metric, and are defined in terms of the Euclidean norm and the sup norm, 
respectively. 
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Definition 1.9. Let x ∈ Rn, written out in component form as x = (x1, x2, . . . , xn). 
The Euclidean norm of x is 

� 2 2x� = x1 + · · ·+ xn, 

and the the sup norm of x is 
x = max |xi .| |

i 
|

From these norms we obtain the Euclidean distance function 

(1.4) x− y� 

and the sup distance function 
x− y , (1.5) | |

respectively. 
These two distance functions are related in several ways. In particular, 

n .|x− y| ≤ �x− y� ≤
√

|x− y|

These distance functions are also related by the following Proposition, which will 
sometimes come in handy. 

Proposition 1.10. A subset U of Rn is open w.r.t. the � � distance function if and 
only if it is open w.r.t. the | | distance function. 

So, these two distance functions give the same topologies of Rn . 

1.4 Continuity 

Consider two metric spaces (X, dX) and (Y, dY ), a function f : X → Y , and a point 
xo ∈ X. 

Definition 1.11. The function f is continuous at xo if for every � > 0 there exists a 
δ > 0 such that 

dX(x, xo) < δ = ⇒ dY (f(x), f(xo)) < �. (1.6) 

By definition, a function is continuous if it is continuous at all points in its domain. 

Definition 1.12. The function f is continuous if f is continuous at every point 
xo ∈ X. 

There is an alternative formulation of continuity that we present here as a theorem. 

Theorem 1.13. The function f is continuous if and only if for every open subset U 
of Y , the pre­image f−1(U) is open in X. 

Continuous functions can often be combined to construct other continuous func­
tions. For example, if f, g : X R are continuous functions, then f + g and fg are →
continuous functions. 
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1.5 Limit Points and Closure 

As usual, let (X, d) be a metric space. 

Definition 1.14. Suppose that A ⊆ X. The point xo ∈ X is a limit point of A if for 
every �­neighborhood U(xo, �) of xo, the set U(xo, �) is an infinite set. 

¯Definition 1.15. The closure of A, denoted by A, is the union of A and the set of 
limit points of A, 

Ā = xo ∈ X : xo is a limit point of A}. (1.7) A ∪ {

Now we define the interior, exterior, and the boundary of a set in terms of open 
csets. In the following, we denote the complement of A by A = X − A. 

Definition 1.16. The set 
Int A ≡ (Āc)c (1.8) 

is called the interior of A. 

It follows that 

x ∈ Int A ⇐⇒ ∃� > 0 such that U(x, �) ⊂ A. (1.9) 

Note that the interior of A is open.

We define the exterior of a set in terms of the interior of the set.


cDefinition 1.17. The exterior of A is defined to be Ext A ≡ Int A . 

The boundary of a set is the collection of all points not in the interior or exterior. 

Definition 1.18. The boundary of A is defined to be Bd A ≡ X−((Ext A)∪(Int A)). 

Always, we have X = Int A ∪ Ext A ∪ Bd A. 
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