Lecture 10

We begin today’s lecture with a simple claim.

Claim. Let Q C R" be a rectangle and f,g : Q — R be bounded functions such that

f<g. Then
ZQfSZ g (3.49)

Proof. Let P be a partition of (), and let R be a rectangle belonging to P. Clearly,
mg(f) < mr(g), so

L(f,P) =Y mg(f)o(R) (3.50)

L(g,P) =Y ma(g)v(R) (3.51)

= L(f,P) < L(g, P) S/ g, (3.52)
L Q

for all partitions P. The lower integral

/ f (3.53)
—Q
is the Lu.b. of L(f, P), so
/ f< / g. (3.54)
—Q —Q
O
Similarly, o o
[/ (3.55)
Q Q
It follows that if f < g, then
< / g. (3.56)
Q Q

This is the monotonicity property of the R. integral.

3.4 Fubini Theorem

In one-dimensional calculus, when we have a continuous function f : [a,b] — R, then
we can calculate the R. integral

/ @)z = F(b) — F(a), (3.57)



where F' is the anti-derivative of f.
When we integrate a continuous function f : () — R over a two-dimensional
region, say () = [a1, b1] X [ag, bs], we can calculate the R. integral

b1 bo b1 ba
- y)dady = y)dzd 3.58
Lf A ™ e pasay ll(wf@wwy> (3.59)

That is, we can break up Q into components and integrate separately over those
components. We make this more precise in the following Fubini Theorem.

First, we define some notation that will be used.

Let n = k + ¢ so that R® = R! x R®. Let ¢ = (cy,...,¢,) € R". We can write

¢ = (a,b), where a = (c1,...,¢) € RF and b = (cpy1,...,¢x1e) € RE Similarly,
let Q = I x ---1, be a rectangle in R”. Then we can write () = A x B, where
A=IL x---xI, ¢ R¥ and B = I};; X --- X I4y € R’. Along the same lines, we
can write a partition P = (Py, ..., P,) as P = (Pa, Pg), where P4y = (P, ..., P;) and
Pp = (Pk+1,---,Pk+£)-
Fubini Theorem. Let f : Q — R be a bounded function and Q = A X B a rectangle
as defined above. We write [ = f(x,y), where x € A, and y € B. Fizing x € A, we
can define a function f, : B — R by f.(y) = f(z,y). Since this function is bounded,
we can define new functions g,h : A — R by

g(x) = /fx, (3.59)

/ S (3.60)

Note that g < h. The Fubini Theorem concludes the following: If f is integrable over
Q, then g and h are integrable over A and

/Ag:/Ah:/Qf. (3.61)

Proof. Let P = (Pa, Pg) be a partition of @, and let R = R4 x Rp be a rectangle
belonging to P (so R4 belongs to P4 and Rp belongs to Pg). Fix zg € A.
First, we claim that

Mpyxrp () < Mg, (fu), (3.62)

the proof of which is straightforward.
Next,

Z mp,xrp([)V(Rp) < Z Mg (foo)v(Rp)

= L( fxo, Pp) (3.63)

/ fzo = g(20).



So,
> mnseny (Fo(Rp) < glxo) (3.64)

for all zyp € R4. The above equation must hold for the infimum of the r.h.s, so

ZmRAXRB RB) < mRA(g)‘ (365)

Observe that v(R4 X Rg) = v(Ra)v(Rp), so

Z mRAxRB(f)U(RA X Rp)

RAXRp

<Y me,(9)v(Ra) (3.66)
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We have just shown that for any partition P = (P, Pg),

L(f, P) < L(g, PA)S/ g, (3.67)
A

1 RE / o (3.68)
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By a similar argument, we can show that

/ / (3.69)
Summarizing, we have shown that

Z / h< / f (3.70)

where we used monotonicity for the middle inequality. Since f is R. integrable,

= 7Q fl (3.71)

so all of the inequalities are in fact equalities. m
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Remark. Suppose that for every x € A, that f, : B — R is R. integrable. That’s
the same as saying g(x) = h(x). Then

AVES R REVALED) o

= [z, y)dxdy,
AxB

using standard notation from calculus.

Remark. In particular, if f is continuous, then f, is continuous. Hence, the above
remark holds for all continuous functions.

3.5 Properties of Riemann Integrals
We now prove some standard calculus results.

Theorem 3.13. Let Q C R™ be a rectangle, and let f,g : Q@ — R be R. integrable
functions. Then, for all a,b € R, the function af + bg is R. integrable and

/Qaf+bg:a/Qf+b/Qg. (3.73)

Proof. Let’s first assume that a,b < 0. Let P be a partition of () and R a rectangle
belonging to P. Then

amp(f) +bmg(g) < mg(af + bg), (3.74)

SO

aL(f,P)+bL(g,P) < L(af + bg, P)

- ZQaf b (3.75)

Claim. For any pair of partitions P' and P”,

aL(f,P') +bL(g, P") g/ af + bg. (3.76)
—Q

To see that the claim is true, take P to be a refinement of P’ and P”, and apply

Equation 3.75. Thus,
a/ f+b/g§/af+bg. (3.77)
—Q —Q —Q

Similarly, we can show that

7Qaf +bg < a/Qf + b7Qg. (3.78)



Since f and g are R. integrable, we know that

7Qf= 1 K 7Q9: Z o (3.79)

These equalities show that the previous inequalities were in fact equalities, so

/Qaf+bg:a/;2f—|—b/Qg. (3.80)

However, remember that we assumed that a,b > 0. To deal with the case of
arbitrary a, b, it suffices to check what happens when we change the sign of a or b.

/Q—f:—/Qf. (3.81)

Proof Hint. Let P be any partition of ). Then L(f, P) = —U(—f, P).

Claim.

You should check this claim, and then use it to complete the proof. O





