Lecture 11

We review some basic properties of the Riemann integral.
Let Q C R™ be a rectangle, and let f,g : ¢ — R be bounded functions. Assume
that f, g are R. integrable. We have the following properties of R. integrals:

e Linearity: a,b € R = af + bg is R. integrable and

/Qaf—i-bg:a/Qf—l—b/Qg. (3.82)

e Monotonicity: If f < g, then
/fS/g (3.83)
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e Maximality Property: Let h : @ — R be a function defined by h(z) =
max(f(z), g(x)).

Theorem 3.14. The function h is R. integrable and

/thmax (/Qf/Qg) (3.84)

Proof. We need the following lemma.

Lemma 3.15. If f and g are continuous at some point xry € Q, then h is
continuous at xg.

Proof. We consider the case f(zg) = g(x¢) = h(z¢) = r. The functions f and
g are continuous at x if and only if for every € > 0, there exists a 6 > 0 such
that |f(x) — f(zo)| < € and |g(z) — g(z0)| < € whenever |z — x| < 9.
Substitute in f(xg) = g(zo) = r. The value of h(x) is either f(z) or g(x), so
|h(x) — 7| < e for |x — x| < §. That is |h(z) — h(xg)| < € for |z — x| <, s0 h
is continuous at xg.

The proofs of the other cases are left to the student.

O
We defined h = max(f,g). The lemma tells is that & is integrable.
Define F, F', and G as follows:
E = Set of points in () where f is discontinuous, (3.85)
F = Set of points in ) where g is discontinuous, (3.86)
G = Set of points in ) where h is discontinuous. (3.87)



The functions f, g are integrable over @) if and only if E, F' are of measure zero.
The lemma shows that G C E U F, so h is integrable over (). To finish the
proof, we notice that

h =max(f,g9) > f,g. (3.88)
Then, by monotonicity,
/thax(/f,/g). (3.89)
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Remark. Let £ = min(f, g). Then k = —max(—f, —g). So, the maximality property
also implies that k is integrable and

/Qk;gmm (/Qf/Qg) (3.90)

A useful trick for when dealing with functions is to change the sign. The preceding
remark and the following are examples where such a trick is useful.
Let f: @ — R be a R. integrable function. Define

f+ =max(f,0), f-=max(—f,0). (3.91)

Both of these functions are R. integrable and non-negative: f,, f- > 0. Also note
that f = f. — f_. This decomposition is a trick we will use over and over again.
Also note that |f| = fi + f_, so |f| is R. integrable. By monotonicity,

Am=4ﬂ+éﬂ
2/Qf+—/Qf_ (3.92)
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By replacing f by —f, we obtain

L= [ =5
y

Combining these results, we arrive at the following claim

/Qlflzl/Qf‘ (3.94)

Proof. The proof is above. O]

(3.93)

Claim.



3.6 Integration Over More General Regions

So far we've been defining integrals over rectangles. Let us now generalize to other
sets.

Let S be a bounded set in R", and let f : S — R be a bounded function. Let
fs : R™ — R be the map defined by

fs(z) =

{f(x) if v €9, (3.95)

0 ifx¢gs.
Let Q be a rectangle such that Int Q O S.

Definition 3.16. The map f is Riemann integrable over S if fg is Riemann integrable

over (). Additionally,
/f:/fs- (3.96)
S Q

One has to check that this definition does not depend on the choice of @), but we
do not check this here.

Claim. Let S be a bounded set in R™, and let f,g : S — R be bounded functions.
Assume that f,qg are R. integrable over S. Then the following properties hold:

o Linearity: If a,b € R, then af + bg is R. integrable over S, and

/Saf+bg:a/gf+b/sg. (3.97)

e Monotonicity: If f < g, then
/fg/g. (3.98)
S S

o Mazimality: If h = max(f,g) (over the domain S), then h is R. integrable over

S, and
/Shzmax </Sf,/sg>. (3.99)

Proof. The proofs are easy, and we outline them here.

e Linearity: Note that afs + bgs = (af + bg)s, so

/Saf+bg=/Q<af+bg>s
:a/Qfs+b/Qgs (3.100)
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e Monotonicity: Use f < g = f¢ < ygs.

e Maximality: Use h = max(f,g9) = hg = max(fs, gs).

Let’s look at some nice set theoretic properties of the Riemann integral.

Claim. Let S, T be bounded subsets of R™ with T" C S. Let f : S — R be bounded
and non-negative. Suppose that f is R. integrable over both S and T. Then

‘Afgéf (3.101)

Proof. Clearly, fr < fs. Let Q be a rectangle with S D Int Q. Then

théh (3.102)

]

Claim. Let Sy,55 be bounded subsets of R™, and let f : S1USy — R be a bounded
function. Suppose that f is R. integrable over both Sy and Sy. Then f is R. integrable
over S1 NSy and over S; U Sy, and

Lw$f:£$ﬂﬁéf—[;&f (3.103)

Proof. Use the following trick. Notice that

fS1U52 - maX(fSlv f52)7 (3104>
fS1I’75'2 = min(f517 fSQ)' (3105)

Now, choose () such that
Int Q D) Sl U SQ, (3106)

so fs,us, and fg,ng, are integrable over Q).
Note the identity

Isius, = fs1 + fss = fsins,- (3.107)

/QfleJSQ Z/QfsmL/Qfsg—/Qfsmsw (3.108)

from which it follows that

AN&fZéyﬂﬁéf—l;&f (3.109)

So,





