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Lecture 12

So far, we have been studying only the Riemann integral. However, there is also 

the Lebesgue integral. These are the two basic integral theories. The Riemann inte­
gral is very intuitive and is usually adequate for problems that usually come up. The 
Lebesgue integral is not as intuitive, but it can handle more general problems. We do 
not encounter these problems in geometry or physics, but we would in probability and 
statistics. You can learn more about Lebesgue integrals by taking Fourier Analysis 
(18.103) or Measure and Integration (18.125). We do not study the Lebesgue integral. 

Let S be a bounded subset of Rn . 

Theorem 3.17. If the boundary of S is of measure zero, then the constant function 
1 is R. integrable over S. The converse is also true. 

¯Proof. Let Q be a rectangle such that Int Q ⊃ S. Define 

1 if x ∈ S, 
1S(x) = (3.110) 

0 if x /∈ S. 

The constant function 1 is integrable over S if and only if the function 1S is integrable 
over Q. The function 1S is integrable over Q if the set of points D in Q where 1S is 
discontinuous is of measure zero. If so, then � � 

1S = 1. (3.111) 
Q S 

Let x ∈ Q. 

1. If x ∈ Int S, then 1S = 1 in a neighborhood of x, so 1S is continuous at x. 

2. If x ∈ Ext S, then 1S = 0 in a neighborhood of x, so 1S is continuous at x. 

3. If x ∈ Bd X, then in every neighborhood U of x there exists points in Ext S 
where 1S = 0 and points in Int S where 1S = 1. So, 1S is discontinuous at x. 

Thus, D is the boundary of S, D = Bd S. Therefore, the function 1S is integrable if 
and only if Bd S is of measure zero. 

3.7 Improper Integrals 

Definition 3.18. The set S is rectifiable if the boundary of S is of measure zero. If 
S is rectifiable, then 

v(S) = 1. (3.112) 
S 

Let us look at the properties of v(S): 
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1. Monotonicity: If S1 and S2 are rectifiable and S1 ⊆ S2, then v(S1) ≤ v(S2). 

2. Linearity: If S1, S2 are rectifiable, then S1 ∪ S2 and S1 ∩ S2 are rectifiable, and 

v(S1 ∪ S2) = v(S1) + v(S2)− v(S1 ∩ S2). (3.113) 

3. If S is rectifiable, then v(S) = 0 if and only if S is of measure zero. 

4. Let A = Int S. If S is rectifiable, then A is rectifiable, and v(S) = v(A). 

The first two properties above are special cases of the theorems that we proved last 
lecture: 

1.	 � � 
if S1 ⊆ S2. (3.114) 1 ≤

S1 S2 

2.	 � � � � 
1 = 1 + 1 − 1. (3.115) 

S1∪S2 S1 S2 S1∩S2 

To see the the third and fourth properties are true, we use some previous results. Let 
Q be a rectangle, and let f : Q → R be R. integrable. We proved the following two 
theorems: 

Theorem A. If f ≥ 0 and	 f = 0, then f = 0 except on a set of measure zero. 
Q 

Theorem B. If f = 0 except on a set of measure zero, then 
S 
f = 0. 

Property 3. above is a consequence of Theorem A with f = 1S.

Property 4. above is a consequence of Theorem B with f = 1S − 1A.

We are still lacking some simple criteria for a bounded set to be integrable. Let


us now work on that. 
Let S be a bounded set, and let f : S R be a bounded function. We want →

simple criteria on S and f such that f to be integrable over S. 

Theorem 3.19. If S is rectifiable and f : S R is bounded and continuous, then f→
is R. integrable over S. 

¯Proof. Let Q be a rectangle such that Int Q ⊃ S. Define fS : Q→ R by 

fS(x) = 
f(x) if x ∈ S, 

(3.116) 
0 if x /∈ S. 

By definition, f is integrable over S if and only if fS is integrable over Q. If so then 
f = fS.

S Q 

Let D be the set of points in Q where fS is discontinuous. Then fS is integrable 
over Q if and only if D is of measure zero.	 What is D? 
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1. If x ∈ Int S, then fS = f in a neighborhood of x, so fS is continuous at x. 

2. If x ∈ Ext S, then fS = 0 in a neighborhood of x, so fS is continuous at x. 

So, we know that D ⊆ Bd S. Because S is rectifiable, the boundary of S has measure 
zero, so D has measure zero. Thus, fS is R. integrable, and therefore so is f . 

Theorem 3.20. Let A be an open subset of Rn . There exists a sequence of compact 
rectifiable sets CN , N = 1, 2, 3, . . . such that 

CN ⊆ Int CN+1 (3.117) 

and 

 
CN = A. (3.118) 

Definition 3.21. The set {CN} is called an exhaustion of A. 

Proof. Take the complement of A, namely B = Rn −A. Define d(x,B) = infy∈B{|x− 
. The function d(x,B) is a continuous function of x (the theorem for this is in y|}

section 4 of Munkres). Let 

DN = {x ∈ A : d(x,B) ≥ 1/N and x . (3.119) | | ≤ N}

The set DN is compact. It is easy to check that DN ⊆ Int DN+1. 

Claim. 

 
DN = A. (3.120) 

Proof. Let x ∈ A. The set A is open, so there exists � > 0 such that the set 
{y ∈ Rn : y − x ≤ �} is contained in A. So, d(x,B) ≥ �.| |

Now, choose N such that 1/N < � and such that |x| < N . Then, by definition, 
x ∈ DN . Therefore ∪DN = A. 

So, the DN ’s satisfy the right properties, except they are not necessarily rectifiable. 
We can make them rectifiable as follows. 

For every p ∈ DN , let Qp be a rectangle with p ∈ Int Qp and Qp ⊆ Int DN+1. 
Then the collection of sets {Int Qp : p ∈ DN} is an open cover of DN . By the H­B 
Theorem, there exists a finite subcover Int Qp1 , . . . , Int Qpr . Now, let 

CN = Qp1 ∪ · · · ∪Qpr . (3.121) 

Then CN ⊆ Int DN ⊆ Int CN+1. 

3




