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Lecture 13

Let A be an open set in Rn, and let f : A R be a continuous function. For the → 

moment, we assume that f ≥ 0. Let D ⊆ A be a compact and rectifiable set. Then 
f |D is bounded, so f is well­defined. Consider the set of all such integrals: 

D 

# = { f : D ⊆ A,D compact and rectifiable}. (3.122) 
D 

Definition 3.22. The improper integral of f over A exists if ∗ is bounded, and we 
define the improper integral of f over A to be its l.u.b. 

f ≡ l.u.b. f = improper integral of f over A. (3.123) 
A D 

Claim. If A is rectifiable and f : A R is bounded, then → 

f = f. (3.124) 
A A 

Proof. Let D ⊆ A be a compact and rectifiable set. So, 

f (3.125) f ≤�D �A 

= ⇒ sup f (3.126) f ≤
D D A 

= ⇒ 
A 

f ≤ f. (3.127) 
A 

The proof of the inequality in the other direction is a bit more complicated. 
¯Choose a rectangle Q such that A ⊆ Int Q. Define fA : Q→ R by 

fA(x) = 
f(

0 

x) if x ∈ A, 

if x /∈ A. 
(3.128) 

By definition, � � 
f = fA. (3.129) 

A Q 

Now, let P be a partition of Q, and let R1, . . . , Rk be rectangles belonging to a 
partition of A. If R is a rectangle belonging to P not contained in A, then R− A = φ. 
In such a case, mR(fA) = 0. So 

k

L(fA, P ) = mRi
(fA)v(Ri). (3.130) 

i=1 
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On the rectangle Ri, 
fA = f ≥ mRi

(fA). (3.131) 

So, 

k

mRi
(fA)v(Ri) ≤ f 

i=1 Ri 

= f (3.132) 
D 

,≤ 
A � 

where D = Ri, which is compact and rectifiable. 
The above was true for all partitions, so 

fA ≤ f. (3.133) 
Q Z 

We proved the inequality in the other direction, so 

f = f. (3.134) 
A A 

3.8 Exhaustions 

Definition 3.23. A sequence of �compact sets Ci, i = 1, 2, 3 . . . is an exhaustion of A 
if Ci ⊆ Int Ci1 for every i, and Ci = A. 

It is easy to see that 

 
Int Ci = A. (3.135) 

Let Ci, i = 1, 2, 3, . . . be an exhaustion of A by compact rectifiable sets. Let 
f : A→ R be continuous and assume that f ≥ 0. Note that 

f, (3.136) f ≤
Ci Ci=1 

since Ci=1 ⊃ Ci. So 

f, i = 1, 2, 3 . . . (3.137) 
Ci 

is an increasing (actually, non­decreasing) sequence. Hence, either 
Ci� f → ∞ as 

i→∞, or it has a finite limit (by which we mean limi→∞ f exists).
Ci 
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Theorem 3.24. The following two properties are equivalent: 

1. f exists,
A 

2. limi→∞ f exists.
Ci 

Moreover, if either (and hence both) property holds, then 

f = lim f. (3.138) 
A i→∞ Ci 

Proof. The set Ci is a compact and rectifiable set contained in A. So, if 

f exists, then (3.139) 
A 

f. (3.140) f ≤
Ci A 

That shows that the sets � 
f, i = 1, 2, 3 . . . (3.141) 

Ci 

are bounded, and 

lim f ≤ f. (3.142) 
Ai→∞ Ci 

Now, let us prove the inequality in the other direction. 
The collection of sets {Int Ci : i = 1, 2, 3 . . . } is an open cover of A. Let D ⊆ A 

be a compact rectifiable set contained in A. By the H­B Theorem, 

N

 
Int Ci, (3.143) D ⊆ 

i=1 

for some N . So, D ⊆ Int CN ⊆ CN . For all such D, 

f ≤ lim f. (3.144) f ≤
D Ci 

i→∞ Ci 

Taking the infimum over all D, we get 

f ≤ lim f. (3.145) 
A i→∞ Ci 

We have proved the inequality in both directions, so 

f = lim f. (3.146) 
A i→∞ Ci 
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A typical illustration of this theorem is the following example.

Consider the integral
 � 1 dx 

, (3.147) √
x0 

which we wrote in the normal integral notation from elementary calculus. In our 
notation, we would write this as 

1 
. (3.148) √

x(0,1) 

1 1Let CN = [
N 
, 1 − 

N 
]. Then 

1 A 
= lim 

(0,1) 

√
x N→∞ CN 

√
x (3.149) 

1−1/N 
= 2

√
x| 21/N → as N → ∞. 

So, 
1 

= 2. (3.150) √
x(0,1) 

Let us now remove the assumption that f ≥ 0. Let f : A R be any continuous →
function on A. As before, we define 

f+(x) = max{f(x), 0}, (3.151) 

f−(x) = max{−f(x), 0}. (3.152) 

We can see that f+ and f− are continuous. 

Definition 3.25. The improper R. integral of f over A exists if and only if the 
improper R. integral of f+ and f− over A exist. Moreover, we define 

f = f+ − f−. (3.153) 
A A A 

We compute the integral using an exhaustion of A. � # �� � � 

f = lim f+ − f
A N→∞ � CN CN 

− 

(3.154) 

= lim f. 
N→∞ CN 

Note that f = f+ + f−, so | | �� � � � 
lim f+ + f = lim f . (3.155) 

N→∞ CN CN 

− 
N→∞ CN 

| |
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Therefore, the improper integral of f exists if and only if the improper integral of |f |
exists. 

Define a function f : R R by →

0 
f(x) = 

e−1/x 

if x ≤ 0, 
(3.156) 

if x > 0. 

This is a C∞(R) function. Clearly, f �(x) = f ��(x) = . . . = 0 when x = 0, so in the 
Taylor series expansion of f at zero, 

n anx = 0, (3.157) 

all of the coefficients an are zero. However, f has a non­zero value in every neighbor­
hood of zero. 

Take a ∈ R and � > 0. Define a new function ga,a+� : R R by →

ga,a+�(x) = 
f(x− a) 

. (3.158) 
f(x− a) + f(a+ �− x) 

The function ga,a+� is a C∞(R) function. Notice that 

0 if x ≤ a, 
(3.159) ga,a+� = 

1 if x ≥ a+ �. 

Take b such that a < a+ � < b− � < b. Define a new function ha,b ∈ C∞(R) by 

ha,b(x) = ga,a+�(x)(1 − ga−�,b(x)). (3.160) 

Notice that 

a,b =


⎧ ⎪⎨ ⎪⎩


0 if x ≤ a, 

1 if a+ � ≤ x ≤ b− �, (3.161)
h

0 if b ≤ x. 
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