Lecture 16

4 Multi-linear Algebra

4.1 Review of Linear Algebra and Topology

In today's lecture we review chapters 1 and 2 of Munkres. Our ultimate goal (not today) is to develop vector calculus in n dimensions (for example, the generalizations of grad, div, and curl).

Let V be a vector space, and let $v_i \in V, i = 1, ..., k$.

- 1. The $v_i's$ are linearly independent if the map from \mathbb{R}^k to V mapping (c_1, \ldots, c_k) to $c_1v_1 + \ldots + c_kv_k$ is injective.
- 2. The v_i 's span V if this map is surjective (onto).
- 3. If the $v_i's$ form a basis, then dim V = k.
- 4. A subset W of V is a *subspace* if it is also a vector space.
- 5. Let V and W be vector spaces. A map $A: V \to W$ is linear if $A(c_1v_1 + c_2v_2) = c_1A(v_1) + c_2A(v_2)$.
- 6. The kernel of a linear map $A: V \to W$ is

$$\ker A = \{ v \in V : Av = 0 \}. \tag{4.1}$$

7. The image of A is

Im
$$A = \{Av : v \in V\}.$$
 (4.2)

8. The following is a basic identity:

$$\dim \ker A + \dim \operatorname{Im} A = \dim V. \tag{4.3}$$

9. We can associate linear mappings with matrices. Let v_1, \ldots, v_n be a basis for V, and let w_1, \ldots, w_m be a basis for W. Let

$$Av_j = \sum_{i=1}^m a_{ij} w_j. (4.4)$$

Then we associate the linear map A with the matrix $[a_{ij}]$. We write this $A \sim [a_{ij}]$.

10. If v_1, \ldots, v_n is a basis for V and $u_j = \sum a_{ij} w_j$ are n arbitrary vectors in W, then there exists a unique linear mapping $A: V \to W$ such that $Av_j = u_j$.

- 11. Know all the material in Munkres section $\oint 2$ on matrices and determinants.
- 12. The quotient space construction. Let V be a vector space and W a subspace. Take any $v \in V$. We define $v + W \equiv \{v + w : w \in W\}$. Sets of this form are called W-cosets. One can check that given $v_1 + W$ and $v_2 + W$,
 - (a) If $v_1 v_2 \in W$, then $v_1 + W = v_2 + W$.
 - (b) If $v_1 v_2 \notin W$, then $(v_1 + W) \cap (v_2 + W) = \phi$.

So every vector $v \in V$ belongs to a unique W-coset.

The quotient space V/W is the set of all W=cosets.

For example, let $V = \mathbb{R}^2$, and let $W = \{(a, 0) : a \in \mathbb{R}\}$. The W-cosets are then vertical lines.

The set V/W is a vector space. It satisfies vector addition: $(v_1+W)+(v_2+W)=(v_1+v_2)+W$. It also satisfies scaler multiplication: $\lambda(v+W)=\lambda v+W$. You should check that the standard axioms for vector spaces are satisfied.

There is a natural projection from V to V/W:

$$\pi: V \to V/W, \ v \to v + W. \tag{4.5}$$

The map π is a linear map, it is surjective, and ker $\pi = W$. Also, Im $\pi = V/W$, so

$$\dim V/W = \dim \operatorname{Im} \pi$$

$$= \dim V - \dim \ker \pi$$

$$= \dim V - \dim W.$$
(4.6)

4.2 Dual Space

13. The dual space construction: Let V be an n-dimensional vector space. Define V^* to be the set of all linear functions $\ell: V \to \mathbb{R}$. Note that if $\ell_1, \ell_2 \in V^*$ and $\lambda_1, \lambda_2 \in \mathbb{R}$, then $\lambda_1 \ell_1 + \lambda_2 \ell_2 \in V^*$, so V^* is a vector space.

What does V^* look like? Let e_1, \ldots, e_n be a basis of V. By item (9), there exists a unique linear map $e_i^* \in V^*$ such that

$$\begin{cases} e_i^*(e_i) = 1, \\ e_i^*(e_j) = 0, \text{ if } j \neq i. \end{cases}$$

Claim. The set of vectors e_1^*, \ldots, e_n^* is a basis of V^* .

Proof. Suppose $\ell = \sum c_i e_i^* = 0$. Then $0 = \ell(e_j) = \sum c_i e_i^*(e_j) = c_j$, so $c_1 = \ldots = c_n = 0$. This proves that the vectors e_i^* are linearly independent. Now, if $\ell \in V^*$ and $\ell(e_i) = c_j$ one can check that $\ell = \sum c_i e_i^*$. This proves that the vectors e_i^* span V^* .

The vectors e_1^*, \ldots, e_n^* are said to be a basis of V^* dual to e_1, \ldots, e_n . Note that dim $V^* = \dim V$.

Suppose that we have a pair of vectors spaces V,W and a linear map $A:V\to W$. We get another map

$$A^*: W^* \to V^*,$$
 (4.7)

defined by $A^*\ell = \ell \circ A$, where $\ell \in W^*$ is a linear map $\ell : W \to \mathbb{R}$. So $A^*\ell$ is a linear map $A^*\ell : V \to \mathbb{R}$. You can check that $A^* : W^* \to V^*$ is linear.

We look at the matrix description of A^* . Define the following bases:

$$e_1, \dots, e_n$$
 a basis of V (4.8)

$$f_1, \dots, f_n$$
 a basis of W (4.9)

$$e_1^*, \dots, e_n^*$$
 a basis of V^* (4.10)

$$f_1^*, \dots, f_n^*$$
 a basis of W^* . (4.11)

Then

$$A^* f_j^*(e_i) = f_j^* (Ae_i)$$

$$= f_j^* (\sum_k a_{ki} f_k)$$

$$= a_{ji}$$

$$(4.12)$$

So,

$$A^* f_j = \sum_k a_{jk} e_k^*, (4.13)$$

which shows that $A^* \sim [a_{ji}] = [a_{ij}]^t$, the transpose of A.