Lecture 17

Today we begin studying the material that is also found in the Multi-linear Algebra
Notes. We begin with the theory of tensors.

4.3 Tensors

Let V be a n-dimensional vector space. We use the following notation.

Notation.
VE=Vx. . xV. (4.14)
k ti
For example,
Vi=V xV, (4.15)
VE=V xV xV. (4.16)

Let T : V¥ — R be a map.

Definition 4.1. The map T is linear in its ith factor if for every sequence v; € V,1 <
Jj <mn,j # i, the function mapping v € V to T'(v1,...,0;i_1,0,Vis1,. .., V) is linear in
.

Definition 4.2. The map 7' is k-linear (or is a k-tensor) if it is linear in all k factors.

Let T1,T, be k-tensors, and let A, Ay € R. Then AT} + \T5 is a k-tensor (it is
linear in all of its factors).
So, the set of all k-tensors is a vector space, denoted by £¥(V), which we sometimes
simply denote by £F.
Consider the special case k = 1. The the set £!(V) is the set of all linear maps
¢:V — R. In other words,
V)=V~ (4.17)
We use the convention that
L(V) =R. (4.18)

Definition 4.3. Let T; € £*,i = 1,2, and define k = k; + ky. We define the tensor
product of Ty and T} to be the tensor T} ® Ty : V¥ — R defined by

T1 & Tg(?}l, . ,’Uk) = T1<U1, e >Uk1)T2(Uk:1+17 e ,Uk). (419)

We can conclude that T} ® T, € LF.
We can define more complicated tensor products. For example, let T; € £Fi i =
1,2,3, and define k = ky + ko + k3. Then we have the tensor product

Tl ®T2 ®T3<U17"‘7U]€)

= Tl(’Ui, Ce 7Uk1>T2(Uk1+1; e 7vk1+k2)T3(Uk1+k2+17 . ,Uk). (420)



Then T3 ® T, ® Ty € LF. Note that we could have simply defined

T1®T2®T3:(T1®T2)®T3

4.21
=T ® (T, ® T3), ( )

where the second equality is the associative law for tensors. There are other laws,
which we list here.
o Associative Law: (71 @ T3) @ T3 = T1 @ (T @ T3).

e Right and Left Distributive Laws: Suppose T; € £F,i = 1,2,3, and assume
that k; = k5. Then

— Left: (T1+T2)®T3 :T1®T3+T2®T3.
- nght T3 (029 (Tl + T2> = T3 X T1 -+ T3 X TQ.
e Let A be a scalar. Then

M eTh) =) T =T ® (\3). (4.22)
Now we look at an important class of k-tensors. Remember that £1(V) = V*,
and take any 1-tensors /; € V*,i=1,... k.
Definition 4.4. The tensor T'= /1 ® - - - ® £}, is a decomposable k-tensor.

By definition, T'(vy, ..., vx) = €1(vy) ... lk(vg). That is, {4 ® -+ @ l(vq, ..., v5) =
£1<U1) . €k(vk).
Now let us go back to considering £F = LF(V).

Theorem 4.5.

dim £* = n*. (4.23)
Note that for k =1, this shows that L'(V) = V* has dimension n.
Proof. Fix a basis ey, ..., e, of V. This defines a dual basis e}, ... ,e; of V* el : V —
R defined by
1 ifi—
€ (e;) = L (4.24)
0 ifi#j.

Definition 4.6. A multi-index I of length k is a set of integers (i1, ..., i), 1 < i, < n.
We define

ef=¢e ® -@e €L" (4.25)
Let J = (j1,...,jkx) be a multi-index of length k. Then
\ . ) 1 if I =J,
6[(63'17 S 7€jk) = eil(ejl) s eik(ejk) = {0 f T 7& J (4'26)



Claim. The k-tensors €} are a basis of L*.

Proof. To prove the claim, we use the following lemma.

Lemma 4.7. Let T be a k-tensor. Suppose that T(e;,,...,e;,) = 0 for all multi-
indices I. Then T' = 0.

Proof. Define a (k — 1)-tensor T} : V*~! — R by setting
ﬂ(’vl,...,l}k_l) :T(Ul,...,vk_1,€j>, (427)

and let vy = > ase;. By linearity, T'(vy,...,vx) = Y. a;/Ti(v1,...,v5-1). So, if the
lemma is true for the 7;’s, then it is true for 7" by an induction argument (we leave
this to the student to prove). O

With this lemma we can prove the claim.
First we show that the e}’s are linearly independent. Suppose that

0=T=> ce}. (4.28)

For any multi-index J of length £k,
0= T(ejl, e 7€jk)

= Z crer(ej, ..., e5.) (4.29)

:CJ
= 0.

So the e}’s are linearly independent.

Now we show that the e}’s span L£F. Let T € LF. For every I let Ty =
T(ei,...,e;), and let T" = > Trej. One can check that (T'—T1")(e;,, ..., ¢€j,) = 0 for
all multi-indices J. Then the lemma tells us that 7' = T", so the e}’s span £*, which
proves our claim. O

Since the e}’s are a basis of £, we see that
dim £* = n*, (4.30)

which proves our theorem. O]



4.4 Pullback Operators

Let V,W be vector spacers, and let A : V — W be a linear map. Let T € LF(W),
and define a new map A*T € L*(V) (called the “pullback” tensor) by

A T(vy,...,up) = T(Avy, ..., Avg). (4.31)
You should prove the following claims as an exercise:
Claim. The map A* : L¥(W) — L¥(V) is a linear map.
Claim. Let T; € LFi(W),i =1,2. Then
AT, @ Ty) = AT, ® A*T. (4.32)

Now, let A:V — W and B : W — U be maps, where U is a vector space. Given
T € LF(U), we can “pullback” to W by B*T, and then we can “pullback” to V by
A*(B*T) = (B o A)*T.
4.5 Alternating Tensors

In this course we will be restricting ourselves to alternating tensors.
Definition 4.8. A permutation of order k is a bijective map

o {1, k}—{1,... k). (4.33)

The map is a bijection, so o~ ! exists.

Given two permutations o1, 0y, we can construct the composite permutation
010 09(1) = 01(09(7)). (4.34)

We define
S = The set of all permutations of {1,...,k}. (4.35)

There are some special permutations. Fix 1 <17 < j < k. Let 7 be the permutation
such that

(i) =j (4.36)
7(j) =i (4.37)
T0) = 0,01, ]. (4.38)

The permutation 7 is called a transposition.
Definition 4.9. The permutation 7 is an elementary transposition if 7 =i + 1.

We state without proof two very useful theorems.



Theorem 4.10. Every permutation can be written as a product 0 = T4 0750+ 0Ty,
where each 7; s an elementary transposition.

Theorem 4.11. Every permutation o can be written either as a product of an even
number of elementary transpositions or as a product of an odd number of elementary
transpositions, but not both.

Because of the second theorem, we can define an important invariant of a permu-
tation: the sign of the permutation.

Definition 4.12. If 0 = 7y 0 --- 0 73,,, where the 7;’s are elementary transpositions,
then the sign of o is
sign of 0 = (—1)7 = (—1)™. (4.39)

Note that if 0 = 01 0 09, then (—1)7 = (—=1)7"(—1)72. We can see this by letting
0] =Ty 00Ty, and 0y =7 0---07, , and noting that oy 00y =1 0--- 07y, ©
/ /
TLO 0T, .





