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Lecture 17

Today we begin studying the material that is also found in the Multi­linear Algebra 

Notes. We begin with the theory of tensors. 

4.3 Tensors 

Let V be a n­dimensional vector space. We use the following notation. 

Notation. 
V k = V × · · · × V . (4.14) 

k times 

For example, 

V 2 = V × V, (4.15) 

V 3 = V × V × V. (4.16) 

Let T : V k R be a map. →

Definition 4.1. The map T is linear in its ith factor if for every sequence vj ∈ V, 1 ≤
j ≤ n, j = i, the function mapping v ∈ V to T (v1, . . . , vi−1, v, vi+1, . . . , vk) is linear in 
v. 

Definition 4.2. The map T is k­linear (or is a k­tensor) if it is linear in all k factors. 

Let T1, T2 be k­tensors, and let λ1, λ2 ∈ R. Then λ1T1 + λ2T2 is a k­tensor (it is 
linear in all of its factors). 

So, the set of all k­tensors is a vector space, denoted by Lk(V ), which we sometimes 
simply denote by Lk . 

Consider the special case k = 1. The the set L1(V ) is the set of all linear maps 
� : V R. In other words, →

1L (V ) = V ∗. (4.17) 

We use the convention that 
0L (V ) = R. (4.18) 

Definition 4.3. Let Ti ∈ Lki , i = 1, 2, and define k = k1 + k2. We define the tensor 
product of T1 and T2 to be the tensor T1 ⊗ T2 : V

k R defined by →

T1 ⊗ T2(v1, . . . , vk) = T1(v1, . . . , vk1)T2(vk1+1, . . . , vk). (4.19) 

We can conclude that T1 ⊗ T2 ∈ Lk . 
We can define more complicated tensor products. For example, let Ti ∈ Lki , i = 

1, 2, 3, and define k = k1 + k2 + k3. Then we have the tensor product 

T1 ⊗ T2 ⊗ T3(v1, . . . , vk) 

= T1(vi, . . . , vk1)T2(vk1+1, . . . , vk1+k2)T3(vk1+k2+1, . . . , vk). (4.20) 
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Then T1 ⊗ T2 ⊗ T3 ∈ Lk . Note that we could have simply defined 

T1 ⊗ T2 ⊗ T3 = (T1 ⊗ T2)⊗ T3 
(4.21) 

= T1 ⊗ (T2 ⊗ T3), 

where the second equality is the associative law for tensors. There are other laws, 
which we list here. 

•	 Associative Law: (T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3). 

•	 Right and Left Distributive Laws: Suppose Ti ∈ Lki , i = 1, 2, 3, and assume 
that k1 = k2. Then 

–	 Left: (T1 + T2)⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3. 

– Right: T3 ⊗ (T1 + T2) = T3 ⊗ T1 + T3 ⊗ T2.


Let λ be a scalar. Then
• 

λ(T1 ⊗ T2) = (λT1)⊗ T2 = T1 ⊗ (λT2).	 (4.22) 

Now we look at an important class of k­tensors. Remember that L1(V ) = V ∗, 
and take any 1­tensors �i ∈ V ∗, i = 1, . . . , k. 

Definition 4.4. The tensor T = �1 ⊗ · · · ⊗ �k is a decomposable k­tensor. 

By definition, T (v1, . . . , vk) = �1(v1) . . . �k(vk). That is, �1 ⊗ · · · ⊗ �k(v1, . . . , vk) = 
�1(v1) . . . �k(vk). 

Now let us go back to considering Lk = Lk(V ). 

Theorem 4.5. 
kdim Lk = n . (4.23) 

Note that for k = 1, this shows that L1(V ) = V ∗ has dimension n. 

Proof. Fix a basis e1, . . . , en of V . This defines a dual basis ei 
∗, . . . , e∗ of V ∗, e∗ 

i : Vn →
R defined by 

1 if i = j, 
e∗ 

i (ej) =	 (4.24) 
0 if i = j. 

Definition 4.6. A multi­index I of length k is a set of integers (i1, . . . , ik), 1 ≤ ir ≤ n. 
We define 

k .	 (4.25) e∗ 
I = ei

∗ 
1 
⊗ · · · ⊗ ei

∗ 
k 
∈ L


Let J = (j1, . . . , jk) be a multi­index of length k. Then


eI
∗(ej1 , . . . , ejk

) = e∗ (ej1) . . . e
∗ 
ik 

(ejk 
) =

1 if I = J, 
(4.26) i1 0 if I = J. 
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Claim. The k­tensors e∗ are a basis of Lk .I 

Proof. To prove the claim, we use the following lemma. 

Lemma 4.7. Let T be a k­tensor. Suppose that T (ei1 , . . . , eik) = 0 for all multi­
indices I. Then T = 0. 

Proof. Define a (k − 1)­tensor Ti : V
k−1 R by setting →

Ti(v1, . . . , vk−1) = T (v1, . . . , vk−1, ej), (4.27) 

and let vk = aiei. By linearity, T (v1, . . . , vk) = aiTi(v1, . . . , vk−1). So, if the 
lemma is true for the Ti’s, then it is true for T by an induction argument (we leave 
this to the student to prove). 

With this lemma we can prove the claim.

First we show that the e∗ 

I ’s are linearly independent. Suppose that


0 = T = cIeI
∗. (4.28) 

For any multi­index J of length k, 

0 = T (ej1 , . . . , ejk
) 

= cIeI
∗(ej1 , . . . , ejk

) 
(4.29) 

= cJ 

= 0. 

So the e∗ 
I ’s are linearly independent. 

kNow we show that the eI
∗’s span L . Let k . For every I let TI =T ∈ L

T (ei1 , . . . , eil), and let T � = TIeI
∗. One can check that (T −T �)(ej1 , . . . , ejk 

) = 0 for 
all multi­indices J . Then the lemma tells us that T = T �, so the eI

∗’s span Lk, which 
proves our claim. 

Since the e∗’s are a basis of Lk, we see that I

kdim Lk = n , (4.30) 

which proves our theorem. 
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4.4 Pullback Operators 

Let V,W be vector spacers, and let A : V → W be a linear map. Let T ∈ Lk(W ), 
and define a new map A∗T ∈ Lk(V ) (called the “pullback” tensor) by 

A∗T (v1, . . . , vk) = T (Av1, . . . , Avk). (4.31) 

You should prove the following claims as an exercise: 

Claim. The map A∗ : L k(V ) is a linear map. k(W ) → L

Claim. Let Ti ∈ Lki(W ), i = 1, 2. Then 

A∗(T1 ⊗ T2) = A∗T1 ⊗ A∗T2. (4.32) 

Now, let A : V → W and B : W → U be maps, where U is a vector space. Given 
k(U), we can “pullback” to W by B∗T , and then we can “pullback” to V by T ∈ L

A∗(B∗T ) = (B A)∗T .◦

4.5 Alternating Tensors 

In this course we will be restricting ourselves to alternating tensors. 

Definition 4.8. A permutation of order k is a bijective map 

σ : {1, . . . , k} → {1, . . . , k}. (4.33) 

The map is a bijection, so σ−1 exists. 
Given two permutations σ1, σ2, we can construct the composite permutation 

σ1 ◦ σ2(i) = σ1(σ2(i)). (4.34) 

We define 
Sk ≡ The set of all permutations of {1, . . . , k}. (4.35) 

There are some special permutations. Fix 1 ≤ i < j ≤ k. Let τ be the permutation 
such that 

τ(i) = j (4.36) 

τ(j) = i (4.37) 

τ(�) = �, � = i, j. (4.38) 

The permutation τ is called a transposition. 

Definition 4.9. The permutation τ is an elementary transposition if j = i+ 1. 

We state without proof two very useful theorems. 
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Theorem 4.10. Every permutation can be written as a product σ = τ1 ◦ τm,τ2 ◦ · · · ◦
where each τi is an elementary transposition. 

Theorem 4.11. Every permutation σ can be written either as a product of an even 
number of elementary transpositions or as a product of an odd number of elementary 
transpositions, but not both. 

Because of the second theorem, we can define an important invariant of a permu­
tation: the sign of the permutation. 

Definition 4.12. If σ = τ1 ◦ · · · ◦ τm, where the τi’s are elementary transpositions, 
then the sign of σ is 

sign of σ = (−1)σ = (−1)m . (4.39) 

Note that if σ = σ1 ◦ σ2, then (−1)σ = (−1)σ1(−1)σ2 . We can see this by letting 
σ1 = τm1 , and σ2 = τ1

� ◦ · · · ◦ τ � , and noting that σ1 ◦ σ2 = τm1 ◦τ1 ◦ · · · ◦ m2
τ1 ◦ · · · ◦

τ � τ � .m21 ◦ · · · ◦
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