Lecture 18

We begin with a quick review of permutations (from last lecture).

A permutation of order k is a bijective map o : {1,...,k} — {1,...,k}. We
denote by S, the set of permutations of order k.

The set S, has some nice properties. If ¢ € Sy, then ¢=! € S;. The inverse
permutation o' is defined by 07!(j) =i if o(i) = j. Another nice property is that
if 0,7 € Sk, then o1 € Sy, where o7(i) = o(7(¢)). That is, if 7(i) = j and o(j) = k,
then o7(i) = k.

Take 1 <1 < j <k, and define

(i) =7 (4.40)

The permutation 7, ; is a transposition. It is an elementary transposition of j = i+ 1.
Last time we stated the following theorem.

Theorem 4.13. Fvery permutation o can be written as a product
O=TiTy" " Ty, (4.43)
where the 1;’s are elementary transpositions.

In the above, we removed the symbol o denoting composition of permutations,
but the composition is still implied.
Last time we also defined the sign of a permutation

Definition 4.14. The sign of a permutation o is (—1)? = (—1)", where r is as in the

above theorem.
Theorem 4.15. The above definition of sign is well-defined, and
(—1)7" = (~1)7(=1)". (4.44)

All of the above is discussed in the Multi-linear Algebra Notes.
Part of today’s homework is to show the following two statements:

1. |Sk| = k!. The proof is by induction.
2. (—1)7s = —1. Hint: use induction and 7; ; = (75_1,;)(7ij-1)(7j-1,;), with i < j.

We now move back to the study of tensors. Let V be an n-dimensional vector
space. We define
VF=Vx---xV. (4.45)
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We define £*(v) to be the space of all k-linear functions T : V¥ — R. If T; € L£Fi i =
1,2, and k = ky + ko, then T} ® Ty, € L*. Decomposable k-tensors are of the form
T =1/(® - QL where each ¢; € L' = V*. Note that {; @ -+ @ lp(vy,...,v3) =

fl(’Ul) Ce fk(’l}k)
We define a permutation operation on tensors. Take o € Sy, and T' € LF(V).

Definition 4.16. We define the map 77 : V¥ — R by
TU(Ul, oo ,Uk) = T(’Uafl(l), “en ,UU—I(k)). (446)
Clearly, T7 € L*(V). We have the following useful formula:

Claim.
(T =17°. (4.47)

Proof.

TTU(Ul, NP ,Uk) = T(Ug—l(.r—l(l)), .o ,Ugfl(q.fl(k)))
= TJ(UT—1(1), e ,’UT—I(k)) (448)
= (T7) (v1,...,0k).

O

Let us look at what the permutation operation does to a decomposable tensor
T:£1®H'®£k*

TU(Ul, c. ,Uk) = €1<UU—1(1)) .. .&;(UU—l(k)). (449)

The ith factor has the subscript o 1(:) = j, where o(j) = 4, so the the ith factor is
lo()(v5)- So

4.50
= (lo1) @ - - @ Lory) (1, - - -, Vi) (4.50)
To summarize,
4.51
{TU:€U(1)®"'®€U(;€). (4.51)

Proposition 4.17. The mapping T € LF — T° € LF is linear.

We leave the proof of this as an exercise.
Definition 4.18. A tensor T' € LK(V) is alternating if T° = (—1)°T for all o € S.
Definition 4.19. We define

AF(V) = the set of all alternating k-tensors. (4.52)



By our previous claim, A* is a vector space.
The alternating operator Alt can be used to create alternating tensors.

Definition 4.20. Given a k-tensor T' € L¥(V), we define the alternating operator
Alt - L¥(V) — AR(V) by

Al (T) =) " (-10)T". (4.53)

TESE
Claim. The alternating operator has the following properties:

1. Alt(T) € A¥(V),

2. If T € AK(V), then Alt (T) = K!T,

3. Alt (T7) = (—1)7 Alt (T),

4. The map Alt : LK(V) — AR(V) is linear.

Proof. 1.
Alt(T) =) (-1)T7, (4.54)
Ale(T)7 =) (=) (T7)°
— _1 TTO'T
Z( ) (4.55)
= (=1)7 Y (-1)7TT"
= (—=1)7 Alt (7).
2.
Alt(T) =) (-1)T7, (4.56)

T

but T7 = (—=1)"T, since T € A*(V). So

AlG(T) = S (1) (1) T
(T) 2( ) (=1) e
— KT,

Al (T7) =) (=1)(T°)

= (4.58)



4. We leave the proof as an exercise.
m

Now we ask ourselves: what is the dimension of A*(V)? To answer this, it is best
to write a basis.

Earlier we found a basis for £F. We defined e, ..., e, to be a basis of V and
e;,...,e: to be a basis of V*. We then considered multi-indices I = (iy,...,4),1 <
ir < n and defined {ej = e} ®--- ® e}, I amulti-index} to be a basis of £*. For

any multi-index J = (ji, ..., jx), we had

1 iftlr=J
er(ei,...,e; )= ’ 4.59
Definition 4.21. A multi-index I = (iy, ..., 1) is repeating if i, = is for some r < s.

Definition 4.22. The multi-index I is strictly increasing if 1 < iy < ... < i < n.
Notation. Given o € Sy, and I = (iy,...,14), we denote I7 = (i51), .- -, lo(k))-

Remark. If J is a non-repeating multi-index, then there exists a permutation ¢ such
that J = 7, where [ is strictly increasing.

€y =€l =iy @ @ey, = (e])”. (4.60)
Define ¢; = Alt (e}).
Theorem 4.23. 1. ;o = (—1)7¢y,
2. If I is repeating, then ¢y = 0,

3. If I,J are strictly increasing, then

1 afr=4J,
w1<€j17"‘76jk) = {O Zf[;é J (461)
Proof. 1.
w]c = Alt 6?0
= Alt ((e7)”)
= (—1)7 Alt e} (4.62)
= (=1)%r.

2. Suppose that [ is repeating. Then I = I” for some transposition 7. So ¢; =
(—1)7¢;. But (as you proved in the homework) (—1)" = —1, so ¢; = 0.



=) (=1)7e, (4.63)
SO
Urles,ne) = > (1) e (e, e5) (4.64)
’ 1T =,
0 if I7 #J.

But I” = J only if 7 is the identity permutation (because both I and J are
strictly increasing). The only non-zero term in the sum is when 7 is the identity
permutation, so

1 if I =J,

0 ifI#J. (4.65)

¢I(ejl7"'7€jk) = {
]

Corollary 5. The alternating k-tensors 1y, where I is strictly increasing, are a basis

of AM(V).
Proof. Take T' € A¥(V). The tensor T can be expanded as T = Y cje}. So

Al (T) = k1> ey Alt (e})

= k! Z C[¢].

If I is repeating, then ¢; = 0. If I is non-repeating, then [ = J?, where J is strictly
increasing. Then ¢y = (—1)7%;.
So, we can replace all multi-indices in the sum by strictly increasing multi-indices,

(4.66)

T = Z aryyr, I’s strictly increasing. (4.67)

Therefore, the 1;’s span A¥(V'). Moreover, the ;s are a basis if and only if the a;’s
are unique. We show that the a;’s are unique.
Let J be any strictly increasing multi-index. Then

T(ej,..- €)= Zal¢<€j17 s €5)

=ay,

(4.68)

by property (3) of the previous theorem. Therefore, the ;’s are a basis of A*(V). O





