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Lecture 19

We begin with a review of tensors and alternating tensors.

We defined Lk(V ) to be the set of k­linear maps T : V k R. We defined
→ 

1, . . . , e
∗e1, . . . , en to be a basis of V and e∗ 
n to be a basis of V ∗. We also defined 

ke∗ 
I = e∗ 

i1 
⊗ · · · ⊗ e∗ 

ik 
} to be a basis of L (V ), where I = (i1, . . . , ik), 1 ≤ ir ≤ n is a {

kmulti­index. This showed that dim Lk = n . 
and T ∈ LkWe defined the permutation operation on a tensor. For σ ∈ Sn , we 

defined T σ ∈ Lk by T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)). Then we defined that 
T is alternating if T σ = (−1)σT . We defined Ak = Ak(V ) to be the space of all 
alternating k­tensors. � 

We defined the alternating operator Alt : Lk → Ak by Alt (T ) = (−1)σT σ, and 
we defined ψI = Alt (e∗ 

I), where I = (i1, . . . , ik) is a strictly increasing multi­index. 
We proved the following theorem: 

Theorem 4.24. The ψI ’s (where I is strictly increasing) are a basis for Ak(V ). 

Corollary 6. If 0 ≤ k ≤ n, then 

n n! 
dim Ak = = 

k!(n− k)! 
.	 (4.69) 

k 

Corollary 7. If k > n, then Ak = .{0}

We now ask what is the kernel of Alt ? That is, for which T ∈ Lk is Alt (T ) = 0? 
Let T ∈ Lk be a decomposable k­tensor, T = �1 ⊗ · · · ⊗ �k, where each �i ∈ V ∗. 

Definition 4.25. The k­tensor T is redundant if �i = �i+1 for some 1 ≤ i ≤ k − 1. 

We define 
k ≡ Span { redundant k­tensors }.	 (4.70) I

Claim.	 If T ∈ Ik, then Alt (T ) = 0. 

Proof. It suffices to prove this for T = �1 ⊗· · ·⊗ �k, where �1 = �i+1 (T is redundant). 
Let τ = τi,i+1 ∈ Sk. So, T τ = T . But 

Alt (T τ )	= (−1)τ Alt (T ) 
(4.71) 

= −Alt (T ), 

so Alt (T ) = 0. 

Claim.	 Suppose that T ∈ Ik and T � ∈ Lm . Then T � k+n and T ⊗ T � .⊗ T ∈ I	 ∈ Ik+m 
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Proof. We can assume that T and T � are both decomposable tensors. 

T = �1 ⊗ · · · ⊗ �k, �i = �i+1, (4.72) 

T � = �� �
m, (4.73) 1 ⊗ · · · ⊗ �

T ⊗ T � = � � (4.74) m�1 ⊗ · · · ⊗ ��i ⊗���i+1 ⊗ · · · ⊗ �k ⊗ �1 ⊗ · · · ⊗ �

a redundancy 

k+m . (4.75) ∈ I

A similar argument holds for T � ⊗ T . 

Claim. For each T ∈ Lk and σ ∈ Sk, there exists some w ∈ Ik such that 

T = (−1)σT σ + W. (4.76) 

Proof. In proving this we can assume that T is decomposable. That is, T = �1 ⊗· · ·⊗ 
�k. 

We first check the case k = 2. Let T = �1 ⊗ �2. The only (non­identity) permuta­
tion is σ = τ1,2. In this case, T = (−1)σT σ + W becomes W = T + T σ, so 

W = T + T σ 

= �1 ⊗ �2 + �2 ⊗ �1 
(4.77) 

= (�1 + �2)⊗ (�1 + �2)− �1 ⊗ �1 − �2 ⊗ �2 
2 .∈ I

We now check the case k is arbitrary. Let T = �1⊗· · ·⊗�k and σ = τ1τ2 . . . τr ∈ Sk, 
where the τi’s are elementary transpositions. We will prove that W ∈ Ik by induction 
on r. 

• Case r = 1: Then σ = τi,i+1, and 

W = T + T σ 

= (�1 ⊗ · · · ⊗ �k) + (�1 ⊗ · · · ⊗ �k)
σ 

(4.78) 
= �1 ⊗ · · · ⊗ �i−1 ⊗ (�i ⊗ �i+1 + �i+1 ⊗ �i)⊗ �i+2 ⊗ · · · ⊗ �k 

k ,∈ I

because (�i ⊗ �i+1 + �i+1 ⊗ �i) ∈ Ik . 

• Induction step ((r − 1) = ⇒ r): Let β = τ2 . . . τr, and let τ = τ1 so that 
σ = τ1τ2 . . . τr = τβ. Then 

T σ = (T β)τ . (4.79) 

By induction, we know that 

T β = (−1)βT + W, (4.80) 
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for some W ∈ Ik . So, 

T σ = (−1)βT τ + W τ 

= (−1)β(−1)τT + W τ (4.81) 

= (−1)σT + W τ , 

kwhere W τ = (−1)τW + W � .∈ I

Corollary 8. For every T ∈ Lk , 

Alt (T ) = k!T + W (4.82) 

for some W ∈ Ik . 

Proof. � 
Alt (T ) = (−1)σT σ , (4.83) 

σ 

kbut we know that T σ = (−1)σT + Wσ, for some Wσ ∈ I , so 

Alt (T ) = (T + (−1)σWσ) 
σ (4.84) 

= k!T + W, 

kwhere W = σ(−1)σWσ ∈ I .


Theorem 4.26. Every T ∈ Lk can be written uniquely as a sum


T = T1 + T2, (4.85) 

kwhere T1 ∈ Ak and T2 ∈ I . 

Proof. We know that Alt (T ) = k!T + W , for some W ∈ Ik . Solving for T , we get 

1 1 
T = Alt (T ) W . (4.86) �k! −

k!�� � � �� � 
T1 T2 

We check uniqueness: 
Alt (T ) = Alt (T1) + Alt (T2), (4.87) � �� � � �� � 

k!T1 0 

so T1 is unique, which implies that T2 is also unique. 

Claim. 
k = ker Alt . (4.88) I
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Proof. If Alt T = 0, then 
1 
W, W ∈ IkT = , (4.89) −

k! 

so T ∈ Ik . 

The space Ik is a subspace of Lk, so we can form the quotient space 

k kΛk(V ∗) ≡ L /I . (4.90) 

What’s up with this notation Λk(V ∗)? We motivate this notation with the case k = 1. 
1There are no redundant 1­tensors, so I1 = {0}, and we already know that L = V ∗. 

So 
1 1Λ1(V ∗) = V ∗/I = L = V ∗. (4.91) 

k/IkDefine the map π : Lk . The map π is onto, and ker π = Ik .→ L

Claim. The map π maps Ak bijectively onto Λk(V ∗). 

Proof. Every element of Λk is of the form π(T ) for some T ∈ Lk . We can write 
kT = T1 + T2, where T1 ∈ Ak and T2 ∈ I . So, 

π(T ) = π(T1) + π(T2) 

= π(T1) + 0 (4.92) 

= π(T1). 

So, π maps Ak onto Λk . Now we show that π is one­to­one. If T ∈ Ak and π(T ) = 0, 
k kthen T ∈ Ik as well. We know that A = {0}, so π is bijective. ∩ I

We have shown that 
kA = Λk(V ∗). (4.93) 

The space Λk(V ∗) is not mentioned in Munkres, but sometimes it is useful to look at 
the same space in two different ways. 

(V ) ∼
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