Lecture 19

We begin with a review of tensors and alternating tensors.

We defined £¥(V) to be the set of k-linear maps 7' : V¥ — R. We defined
e1,...,e, to be a basis of V and e],...,e;, to be a basis of V*. We also defined
{ej = €5, ®---®e; } to be a basis of LX(V), where I = (iy,...,4), 1 <i, <nisa
multi-index. This showed that dim £* = n*.

We defined the permutation operation on a tensor. For ¢ € S,, and T € LF, we
defined T7 € L* by T7(v1,...,vx) = T(vs-101), ..., Vo-1()). Then we defined that
T is alternating if T° = (—1)°T. We defined A* = A*(V) to be the space of all
alternating k-tensors.

We defined the alternating operator Alt : £¥ — A* by Alt (T) = Y (—1)°T7, and
we defined ¢; = Alt (e}), where I = (i,...,14) is a strictly increasing multi-index.
We proved the following theorem:

Theorem 4.24. The ;s (where I is strictly increasing) are a basis for A¥(V).

Corollary 6. If 0 < k <n, then

|
dim A* = (Z) S—— (4.69)

Corollary 7. If k > n, then A* = {0}.

We now ask what is the kernel of Alt? That is, for which 7' € £* is Alt (T') = 0?
Let T € L£F be a decomposable k-tensor, T = {1 ® - - - @ {},, where each ¢; € V*.

Definition 4.25. The k-tensor T' is redundant if ¢; = ¢;1 for some 1 <1 < k — 1.

We define
7% = Span { redundant k-tensors }. (4.70)

Claim. If T € T*, then Alt (T) = 0.

Proof. 1t suffices to prove this for T'={; ® - - - ® l,, where ¢; = {;11 (T is redundant).
Let 7 = Tii+1 € Sk SO, T =T. But

ALt (T7) = (—1)" Alt (7))

= — Alt(T), (4.71)

so Alt (T') = 0. O
Claim. Suppose that T € IF and T' € L™. Then T' QT € ITF" and TQ T' € ITF™.



Proof. We can assume that T and 7" are both decomposable tensors.

T:€1®®€k, gz :£i+17 (472)
T'=0® -, (4.73)
TRT =6Q-® L; @iy @ QUK ® -4, (4.74)
——
a redundancy
c I+, (4.75)
A similar argument holds for 7" ® T'. O

Claim. For each T € LF and o € Sy, there exists some w € IF such that
T=(-1)T"+W. (4.76)

Proof. In proving this we can assume that 7T is decomposable. Thatis, T =/, ®---®
.

We first check the case k = 2. Let T'= ¢; ® {. The only (non-identity) permuta-
tion is o0 = 7y 5. In this case, T' = (—1)°T7 + W becomes W =T+ 717, so

W=T+1T°
=0 QR ly+ly ® ¥
=l +0)R W+ l) =l @0 —ly® U
c1°

(4.77)

We now check the case k is arbitrary. Let T'= 1 ®---®/{, and 0 = 175 ... 7, € Sk,
where the 7;’s are elementary transpositions. We will prove that W € Z* by induction
on 7.

e Case r =1: Then 0 = 7,41, and

W=T+T°
=L@ @)+ (L@ @)
=0 QR L 1® (U @i+l 1 QL) @it ® - Ry,
AR

(4.78)

because (; ® li1 + b @ 4;) € TF.

e Induction step ((r — 1) = r): Let f§ = 7»...7,, and let 7 = 7y so that
oc=mnTy... 7, = 7. Then

T° = (T°)". (4.79)

By induction, we know that

T = (=1)°T + W, (4.80)



for some W € I*. So,

T° = (-1)°T" + W7
(=) (=1)"T+ W~ (4.81)
()T +WT,

where W7 = (=1)"W + W' € I*.

O
Corollary 8. For every T € LF,
AlW(T)=KIT+W (4.82)
for some W € I*.
Proof.
Al (T) =) (-1)7T7, (4.83)
but we know that 7% = (—1)°T + W, for some W, € Z*, so
AlL(T) =) (T + (=1)°W,,)
o (4.84)
=kIT+W,
where W =Y _(—1)°W, € I*. O
Theorem 4.26. Every T € LF can be written uniquely as a sum
T =T + T, (4.85)

where Ty € A* and T, € IF.
Proof. We know that Alt (T) = k!T + W, for some W € Z*. Solving for T, we get

1 1
—_—— =
T T
We check uniqueness:
Alt (T') = Alt (T1) + Alt (Ty), (4.87)
—— N —
kT 0
so T} is unique, which implies that T5 is also unique. O
Claim.
TF = ker Alt . (4.88)
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Proof. Tf Alt T =0, then
1

k!
so T € T*. m

T W, W eIt (4.89)

The space Z* is a subspace of £, so we can form the quotient space
AR (VY = gk jTh, (4.90)

What’s up with this notation A¥(V*)? We motivate this notation with the case k = 1.
There are no redundant 1-tensors, so Z' = {0}, and we already know that £! = V*.
So

ANV =V )Tt =L =V (4.91)

Define the map 7 : £L¥ — £F/T%. The map 7 is onto, and ker 7 = Z*.
Claim. The map 7 maps A* bijectively onto A¥(V*).

Proof. Every element of A* is of the form 7(T) for some T € L£F. We can write
T =T, + Ty, where T} € A* and Ty € Z*. So,

m(T1) + m(13)

So, m maps A* onto A¥. Now we show that 7 is one-to-one. If T' € A* and #(T) = 0,
then T' € Z* as well. We know that A* N Z% = {0}, so  is bijective. O

We have shown that
AF(V) = AR (V). (4.93)

The space A*(V*) is not mentioned in Munkres, but sometimes it is useful to look at
the same space in two different ways.



