
Lecture 2


1.6 Compactness 

As usual, throughout this section we let (X, d) be a metric space. We also remind 
you from last lecture we defined the open set 

U(xo, λ) = {x ∈ X : d(x, xo) < λ}. (1.10) 

Remark. If U(xo, λ) ⊆ U(x1, λ1), then λ1 > d(xo, x1). 

Remark. If Ai ⊆ U(xo, λi) for i = 1, 2, then A1 ∪ A2 ⊆ U(xo, λ1 + λ2). 

Before we define compactness, we first define the notions of boundedness and 
covering. 

Definition 1.19. A subset A of X is bounded if A ⊆ U(xo, λ) for some λ. 

Definition 1.20. Let A ⊆ X. A collection of subsets {Uα ⊆ X,α ∈ I} is a cover of 
A if 

 

A ⊂ Uα. 
α∈I 

Now we turn to the notion of compactness. First, we only consider compact sets 
as subsets of Rn . 

For any subset A ⊆ Rn , 

A is compact ⇐⇒ A is closed and bounded. 

The above statement holds true for Rn but not for general metric spaces. To 
motivate the definition of compactness for the general case, we give the Heine­Borel 
Theorem. 

Heine­Borel (H­B) Theorem. Let A ⊆ Rn be compact and let {Uα, α ∈ I} be a 
cover of A by open sets. Then a finite number of Uα’s already cover A. 

The property that a finite number of the Uα’s cover A is called the Heine­Borel 
(H­B) property. So, the H­B Theorem can be restated as follows: If A is compact in 
Rn, then A has the H­B property. 

Sketch of Proof. First, we check the H­B Theorem for some simple compact subsets 
of Rn . Consider rectangles Q = I1 × · · · × In ⊂ Rn, where Ik = [ak, bk] for each k. 
Starting with one dimension, it can by shown by induction that these rectangles have 
the H­B property. 

Too prove the H­B theorem for general compact subsets, consider any closed and 
bounded (and therefore compact) subset A of Rn . Since A is bounded, there exists a 
rectangle Q such that A ⊆ Q. Suppose that the collection of subsets {Uα, α ∈ I} is 
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an open cover of A. Then, define Uo = Rn −A and include Uo in the open cover. The 
rectangle Q has the H­B property and is covered by this new cover, so there exists 
a finite subcover covering Q. Furthermore, the rectangle Q contains A, so the finite 
subcover also covers A, proving the H­B Theorem for general compact subsets. 

The following theorem further motivates the general definition for compactness. 

Theorem 1.21. If A ⊆ Rn has the H­B property, then A is compact. 

Sketch of Proof. We need to show that the H­B property implies A is bounded (which 
we leave as an exercise) and closed (which we prove here). 

To show that A is closed, it is sufficient to show that Ac is open. Take any xo ∈ A , 
and define 

CN = {x ∈ Rn : d(x, xo) ≤ 1/N}, (1.11) 

and 
UN = Cc 

N . (1.12) 

Then, � 
CN = {xo} (1.13) 

and 

 
RnUN = − {xo}. (1.14) 

The UN ’s cover A, so the H­B Theorem implies that there is a finite subcover 
{UN1 , . . . , UNk

} of A. We can take N1 < N2 < < Nk, so that A ⊆ UNk
. By· · · 

ctaking the complement, it follows that CNk 
⊆ A . But U(xo, 1/Nk) ⊆ CNk

, so xo 
c c cis contained in an open subset of A . The above holds for any xo ∈ A , so A is 

open. 

Let us consider the above theorem for arbitrary metric space (X, d) and A ⊆ X. 

Theorem 1.22. If A ⊆ X has the H­B property, then A is closed and bounded. 

Sketch of Proof. The proof is basically the same as for the previous theorem. 

Unfortunately, the converse is not always true. Finally, we come to our general 
definition of compactness. 

Definition 1.23. A subset A ⊆ X is compact if it has the H­B property. 

Compact sets have many useful properties, some of which we list here in the 
theorems that follow. 

Theorem 1.24. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X Y be a →
continuous map. If A is a compact subset of X, then f(A) is a compact subset of Y. 
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Proof. Let {Uα, α ∈ I} be an open covering of f(A). Each pre­image f−1(Uα) is 
open in X, so {f−1(Uα) : α ∈ I} is an open covering of A. The H­B Theorem says 
that there is a finite subcover {f−1(Uαi

) : 1 ≤ i ≤ N}. It follows that the collection 
{Uαi 

: 1 ≤ i ≤ N} covers f(A), so f(A) is compact. 

A special case of the above theorem proves the following theorem. 

Theorem 1.25. Let A	 be a compact subset of X and f : X R be a continuous →
map. Then f has a maximum point on A. 

Proof. By the above theorem, f(A) is compact, which implies that f(a) is closed and 
and bounded. Let a = l.u.b. of f(a). The point a is in f(A) because f(A) is closed, 
so there exists an xo ∈ A such that f(xo) = a. 

Another useful property of compact sets involves the notion of uniform continuity. 

Definition 1.26. Let f	 : X R be a continuous function, and let A be a subset of →
X. The map f is uniformly continuous on A if for every � > 0, there exists δ > 0 
such	that 

d(x, y) < δ = ⇒ |f(x)− f(y) < �, | 

for all x, y ∈ A. 

Theorem 1.27. If f : X → Y is continuous and A is a compact subset of X, then 
f is uniformly continuous on A. 

Proof. Let p ∈ A. There exists a δp > 0 such that f(x) − f(p) < �/2 for all | |
x ∈ U(p, δp). Now, consider the collection of sets {U(p, δp/2) : p ∈ A}, which is an 
open cover of A. The H­B Theorem says that there is a finite subcover {U(pi, δpi

/2) : 
1 ≤ i ≤ N}. Choose δ ≤ min δpi

/2. The following claim finishes the proof. 

Claim. If d(x, y) < δ, then f(x)− f(y) < �.| | 

Proof. Given x, choose pi such that x ∈ U(pi, δpi
/2). So, d(pi, x) < δpi

/2 and d(x, y) < 
δ < δpi

/2. By the triangle inequality we conclude that d(pi, y) < δpi
. This shows that 

x, y ∈ U(pi, δpi
), which implies that f(x) − f(pi) < �/2 and f(y) − f(pi) < �/2.| | | |

Finally, by the triangle inequality, f(x)− f(y) < �, which proves our claim. | | 

1.7 Connectedness 

As usual, let (X, d) be a metric space. 

Definition 1.28. The metric space (X, d) is connected if it is impossible to write X 
as a disjoint union X = U1 ∪ U2 of non­empty open sets U1 and U2. 
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Note that disjoint simply means that U1 ∩ U2 = φ, where φ is the empty set. 
A few simple examples of connected spaces are R, Rn, and I = [a, b]. The following 

theorem shows that a connected space gets mapped to a connected subspace by a 
continuous function. 

Theorem 1.29. Given metric spaces (X, dX) and (Y, dY ), and a continuous map 
f : X Y , it follows that → 

X is connected = ⇒ f(X) is connected. 

Proof. Suppose f(X) can be written as a union of open sets f(X) = U1 ∪ U2 such 
that U1 ∩ U2 = φ. Then X = f−1(U1)∪ f−1(U2) is a disjoint union of open sets. This 
contradicts that X is connected. 

The intermediate­value theorem follows as a special case of the above theorem. 

Intermediate­value Theorem. Let (X, d) be connected and f : X R be a con­→
tinuous map. If a, b ∈ f(X) and a < r < b, then r ∈ f(X). 

Proof. Suppose r /∈ f(X). Let A = (−∞, r) and B = (r,∞). Then X = f−1(A) ∪
f−1(B) is a disjoint union of open sets, a contradiction. 
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