Lecture 2

1.6 Compactness

As usual, throughout this section we let (X,d) be a metric space. We also remind
you from last lecture we defined the open set

U(zo,N) ={x € X 1 d(x,z,) < A} (1.10)
Remark. If U(z,,\) C U(x1, A1), then Ay > d(x,, x1).
Remark. If Az Q U(l’a, >\z) for ¢ = ]_, 2, then Al U Ag g U(l‘o, )\1 + )\2)

Before we define compactness, we first define the notions of boundedness and
covering.

Definition 1.19. A subset A of X is bounded if A C U(z,, A) for some \.

Definition 1.20. Let A C X. A collection of subsets {U, C X, « € I} is a cover of
Aif
Ac|JU..

Now we turn to the notion of compactness. First, we only consider compact sets
as subsets of R".
For any subset A C R",

A is compact <= A is closed and bounded.

The above statement holds true for R™ but not for general metric spaces. To
motivate the definition of compactness for the general case, we give the Heine-Borel
Theorem.

Heine-Borel (H-B) Theorem. Let A C R"™ be compact and let {U,, € I} be a
cover of A by open sets. Then a finite number of U, ’s already cover A.

The property that a finite number of the U,’s cover A is called the Heine-Borel
(H-B) property. So, the H-B Theorem can be restated as follows: If A is compact in
R", then A has the H-B property.

Sketch of Proof. First, we check the H-B Theorem for some simple compact subsets
of R™. Consider rectangles @ = I x --+ x I, C R™, where I}, = [ay, by] for each k.
Starting with one dimension, it can by shown by induction that these rectangles have
the H-B property.

Too prove the H-B theorem for general compact subsets, consider any closed and
bounded (and therefore compact) subset A of R™. Since A is bounded, there exists a
rectangle () such that A C ). Suppose that the collection of subsets {U,,« € I} is



an open cover of A. Then, define U, = R" — A and include U, in the open cover. The
rectangle () has the H-B property and is covered by this new cover, so there exists
a finite subcover covering (). Furthermore, the rectangle () contains A, so the finite
subcover also covers A, proving the H-B Theorem for general compact subsets.

[
The following theorem further motivates the general definition for compactness.
Theorem 1.21. If A CR" has the H-B property, then A is compact.

Sketch of Proof. We need to show that the H-B property implies A is bounded (which
we leave as an exercise) and closed (which we prove here).

To show that A is closed, it is sufficient to show that A€ is open. Take any x, € A€,
and define

Cy={z€eR":d(z,z,) <1/N}, (1.11)
and
Uy = C5,. (1.12)
Then,
(Cn = {z.} (1.13)
and

Uy =R" - {z.}. (1.14)

The Uy’s cover A, so the H-B Theorem implies that there is a finite subcover
{Uny,....,Un,} of A. We can take N; < Ny < --- < Ni, so that A C Uy,. By
taking the complement, it follows that Cy, C A°. But U(xz,,1/Ng) C Ch,, so z,
is contained in an open subset of A°. The above holds for any z, € A° so A€ is
open. ]

Let us consider the above theorem for arbitrary metric space (X,d) and A C X.
Theorem 1.22. If A C X has the H-B property, then A is closed and bounded.
Sketch of Proof. The proof is basically the same as for the previous theorem. O]

Unfortunately, the converse is not always true. Finally, we come to our general
definition of compactness.

Definition 1.23. A subset A C X is compact if it has the H-B property.

Compact sets have many useful properties, some of which we list here in the
theorems that follow.

Theorem 1.24. Let (X,dx) and (Y,dy) be metric spaces, and let f : X — Y be a
continuous map. If A is a compact subset of X, then f(A) is a compact subset of Y.



Proof. Let {U,,a € I} be an open covering of f(A). Each pre-image f~1(U,) is
open in X, so {f~1(U,) : @ € I} is an open covering of A. The H-B Theorem says
that there is a finite subcover {f~1(U,,) : 1 <i < N}. It follows that the collection

i

{U,, : 1 <i < N} covers f(A), so f(A) is compact. O
A special case of the above theorem proves the following theorem.

Theorem 1.25. Let A be a compact subset of X and f : X — R be a continuous
map. Then f has a mazimum point on A.

Proof. By the above theorem, f(A) is compact, which implies that f(a) is closed and
and bounded. Let a = Lu.b. of f(a). The point a is in f(A) because f(A) is closed,
so there exists an x, € A such that f(z,) = a. O

Another useful property of compact sets involves the notion of uniform continuity.

Definition 1.26. Let f : X — R be a continuous function, and let A be a subset of
X. The map f is uniformly continuous on A if for every e > 0, there exists § > 0
such that

d(z,y) <6 = [f(z) = fly)| <e
for all x,y € A.

Theorem 1.27. If f : X — Y is continuous and A is a compact subset of X, then
f is uniformly continuous on A.

Proof. Let p € A. There exists a d, > 0 such that |f(z) — f(p)| < €/2 for all
x € U(p,d,). Now, consider the collection of sets {U(p,d,/2) : p € A}, which is an
open cover of A. The H-B Theorem says that there is a finite subcover {U (p;, d,,/2) :
1 <i < N}. Choose § < mind,, /2. The following claim finishes the proof.

Claim. Ifd(xz,y) <6, then |f(z) — f(y)| <.

Proof. Given z, choose p; such that z € U(p;, d,,/2). So, d(p;, x) < 6p,/2 and d(x,y) <
d < d,,/2. By the triangle inequality we conclude that d(p;,y) < d0p,. This shows that

z,y € U(pi,d,,), which implies that |f(z) — f(p;)] < €¢/2 and |f(y) — f(p:)] < €/2.
Finally, by the triangle inequality, |f(x) — f(y)| < €, which proves our claim.

]

1.7 Connectedness

As usual, let (X, d) be a metric space.

Definition 1.28. The metric space (X, d) is connected if it is impossible to write X
as a disjoint union X = U; U U, of non-empty open sets U; and Us,.



Note that disjoint simply means that U; N Uy = ¢, where ¢ is the empty set.

A few simple examples of connected spaces are R, R", and I = [a, b]. The following
theorem shows that a connected space gets mapped to a connected subspace by a
continuous function.

Theorem 1.29. Given metric spaces (X,dx) and (Y,dy), and a continuous map
f: X =Y, it follows that

X is connected = f(X) is connected.

Proof. Suppose f(X) can be written as a union of open sets f(X) = U; U Us such
that Uy NUy = ¢. Then X = f~1(U;)U f~1(Us) is a disjoint union of open sets. This
contradicts that X is connected. O

The intermediate-value theorem follows as a special case of the above theorem.

Intermediate-value Theorem. Let (X,d) be connected and f : X — R be a con-
tinuous map. If a,b € f(X) and a <r < b, thenr € f(X).

Proof. Suppose r ¢ f(X). Let A = (—oo,r) and B = (r,00). Then X = f~!(A) U
f~YB) is a disjoint union of open sets, a contradiction. O





