Lecture 20

We begin with a review of last lecture.

Consider a vector space V. A tensor T € LF is decomposable if T = {1 ® --- ®
lw, U; € LY = V*. A decomposable tensor T is redundant of ¢; = ;1 for some i. We
define

7% = 7%(V') = Span { redundant k-tensors }. (4.94)
Because ZF C £*, we can take the quotient space
AP = ARV = £F)TF, (4.95)
defining the map
7 L — AR, (4.96)

We denote by A*(V) the set of all alternating k-tensors. We repeat the main theorem
from last lecture:

Theorem 4.27. The map © maps A* bijectively onto A¥. So, A* = A¥,

It is easier to understand the space A*, but many theorems are much simpler
when using A*. This ends the review of last lecture.

4.6 Wedge Product

Now, let T} € Z% and Ty € £*?. Then T} ®T, and To,®T; are in ZF, where k = ki + k.
The following is an example of the usefulness of A*.

Let p; € A%, i =1,2. So, u; = 7(T;) for some T; € L¥. Define k = ky + ky, so
T, @ Ty, € LF. Then, we define

T(Ty ® Ty) = iy A g € A*. (4.97)
Claim. The product p; A ps is well-defined.
Proof. Take any tensors T/ € LFi with w(T}) = u;. We check that

We can write
T, = Ty + Wi, where W, € T, (4.99)
Ty = Ty + Ws, where W, € T2 (4.100)
Then,
NeTh=TioT,+Wi@T,+Ti @ Wy + W, @ W, (4.101)
ez
SO
A = (T © Ty) = 7(Ty ® T). (4.102)
O



This product (A) is called the wedge product. We can define higher order wedge
products. Given yu; € A%, i =1,2 3, where u = 7(T;), we define

1251 VAN j2%) AN M3 = 7T(T1 X T2 X Tg) (4103)

We leave as an exercise to show the following claim.

Claim.
N o N = A A
i A g A s = (1 A o) A i (4.104)
= pa A (2 A pis).
Proof Hint: This triple product law also holds for the tensor product. O
We leave as an exercise to show that the two distributive laws hold:

Claim. If ky = ko, then

(1 + p2) A pg = pa A pis + po A pis. (4.105)
]f k‘Q = /{33, then

i A (pio + p13) = p A o + pa A pis. (4.106)

Remember that Z' = {0}, so A' = A'/Z' = £} = £YV) = V*. That is,
AN (V) =V

Definition 4.28. The element p € AF is decomposable if it is of the form pu =
0y A -+~ AL, where each ¢; € A = V*,

That means that y = 7(¢; ®- - - ® ¥y ) is the projection of a decomposable k-tensor.
Take a permutation o € S, and an element w € A* such that w = 7(T), where
T e LF.

Definition 4.29.
w? =m(T7). (4.107)

We need to check that this definition does not depend on the choice of T
Claim. Define w? = w(T7). Then,
1. The above definition does not depend on the choice of T,
2. w? = (-1)w.
Proof. 1. Last lecture we proved that for T' € LF,
T° = (=1)°T + W, (4.108)

for some W € Z*. Hence, if T € Z*, then T° € IF. If w = 7(T) = 7(1"), then
T'—T € I". Thus, (T")° —T° € IF, so w? = 7((T")°) = =(T°).
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T° = (=1)°T + W, (4.109)
for some W € T¥, so
©(T°) = (=1)°x(T). (4.110)
That is,
w? = (—1)w. (4.111)
O

Suppose w is decomposable, so w = (1 A+ Aly, {; € V. Thenw = w({ A+ Aly),
SO

W =m((lh®- - ®@k)7)
= 7T(€0(1) XX Ea(k)) (4.112)
= gg(l) VANRIERIAY fo(k).

Using the previous claim,
60(1) VANRRRIVAY Eg(k) = (—1)061 Ao ANl (4.113)

For example, if £ = 2, then 0 = 7 9. So, lo AN ¢y = —{; A ly. In the case k = 3, we
find that

(61 /\62) /\€3 = 61 A <£2 /\63)
= —ly A (Uy N ly) = —(ly Nls) ALy (4.114)
- 63 A (51 VAN 62)

This motivates the following claim, the proof of which we leave as an exercise.
Claim. If u € A* and { € A', then
puNANl="10Np. (4.115)
Proof Hint: Write out u as a linear combination of decomposable elements of A2, [
Now, suppose k = 4. Moving /3 and ¢, the same distance, we find that
(ly Nlo) N (g AN Ly) = (U3 N Ly) N (L A Ly). (4.116)
The proof of the following is an exercise.
Claim. If u € A* and v € A?, then
PAV=VApN. (4.117)
We generalize the above claims in the following:
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Claim. Left p € AF and v € A*. Then
pAv=(=1DFvAp. (4.118)

Proof Hint: First assume k is even, and write out p as a product of elements all of
degree two. Second, assume that k is odd. O

Now we try to find a basis for A¥(V*). We begin with

€1,...,€e, a basis of V, (4.119)
e;,...,er abasis of V", (4.120)
ef=e ® --@e, [=(i,... i), 1 <i, <n, abasis of L, (4.121)
Y = Alt (e}), I’s strictly increasing, a basis of A*(V). (4.122)

We know that m maps A* bijectively onto A*, so 7(1;), where I is strictly increasing,
are a basis of A*(V*).

Yr=Altej = (=1)7(e))". (4.123)
So,

(
=S (1) (-1 (e)) (4.124)
(

Theorem 4.30. The elements of A*(V*)

ENNEL, 1< <...<ip<n (4.125)

are a basis of N*(V*).
Proof. The proof is above. O]

Let V,W be vector spaces, and let A : V' — W be a linear map. We previously
defined the pullback operator A* : LE(W) — LF(V). Also, given T; € LF(W),i =
1,2, we showed that A*(T) @ Ty) = A1 @ A*T5. So, f T =0, Q- @4, € L (W) is
decomposable, then

AT=A"1® - Q Ay, ;€ W*. (4.126)

If ¢; = ¢; 1, then A*(; = A*(;;1. This shows that if /; ® - -+ ® ¢, is redundant, then
A*(ly ® -+ - ® ly) is also redundant. So,

ATHW) C TH(V). (4.127)

Let p € A*(W*), so u = w(T) for some T € LF¥(W). We can pullback to get
m(A*T) € Ak(V*).



Definition 4.31. A*u = n(A*T).

This definition makes sense. If y = 7(T) = #(T"), then T/ — T € ZF(W). So
A*T" — A*T € I%(V'), which shows that A*p = 7(A*T") = 7(A*T).

We ask in the homework for you to show that the pullback operation is linear and
that



