Lecture 22

In R? we had the operators grad, div, and curl. What are the analogues in R™?
Answering this question is the goal of today’s lecture.

4.9 Tangent Spaces and k-forms
Let p € R™.

Definition 4.36. The tangent space of p in R™ is
T,R" ={(p,v) : v e R"}. (4.144)
We identify the tangent space with R" via the identification

T,R" = R" (4.145)
(p,v) — . (4.146)
Via this identification, the vector space structure on R™ gives a vector space structure
on T,R".
Let U be an open set in R”, and let f : U — R™ be a C! map. Also, let p € U
and define ¢ = f(p). We define a linear map
df, : T,R" — T,R™ (4.147)
according to the following diagram:
TR T, TR

%l 4 (4.148)

R™ Df(p) R™.
So,
dfp(p,v) = (¢, Df(p)v). (4.149)

Definition 4.37. The cotangent space of R™ at p is the space
T'R" = (T,R")", (4.150)
which is the dual of the tangent space of R™ at p.

Definition 4.38. Let U be an open subset of R". A k-form on U is a function w
which assigns to every point p € U an element w, of A*(TR") (the kth exterior power
of T*R™).
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Let us look at a simple example. Let f € C*(U), p € U, and ¢ = f(p). The map
df, : T,R" - T.R=R (4.151)

is a linear map of T,R" into R. That is, df, € T;R™. So, df is the one-form on U
which assigns to every p € U the linear map

df, € T;R" = A (T;R). (4.152)
As a second example, let f, g € C*°(U). Then gdf is the one-form that maps
p €U — g(p)df, € A'(T;R™). (4.153)
As a third example, let f,g € C*°(U). Then w = df A dg is the two-form that maps
p e U — df, Ndg,. (4.154)

Note that dfy, dg, € TR, so df, A dg, € A*(TR").
As a fourth and final example, let fi,..., fr € C*°(U). Then df; A --- A dfy is the
k-form that maps

pE U— (dfl)p A A (dfk>p (4155)
Note that each (df;), € T;R", so (df1), A--- A (dfy), € A*(T;R").

Let us now look at what k-forms look like in coordinates. Let eq,...,d, be the
standard basis of R™. Let p € U and let v; = (p,e;) for each i. Then, the vectors
v1,...,0, are a basis of T,R".

Suppose we have a map f € C>°(U). What is df,(v;)?

of
Byl0) = Decf () = (). (1.156)

In particular, letting x; be the ¢th coordinate function,

e, (1 ifiei.
(dzi)p(v;) = a—j = {o ; z 4 j (4.157)
So, (dx1)y, ..., (dv,), is the basis of TXR™ dual to vy, ..., v,.
For any f € C>*(U),
0
Byle) = L)
of
= (p)(dz;) ) (v5)
<Z Oz; ’ (4.158)
— &= ),
0
= df =) a—jd ;



Since (dwy)y, - - ., (dry,), is a basis of T)R", the wedge products
(dxp)p, = (daiy)p A AN (dxy,)p, 1 <13 <---<i <n, (4.159)

(I strictly increasing) are a basis of AF(T*R™).
Therefore, any element w, of A*(T7R"™) can be written uniquely as a sum

Wy = Z ar(p)(dzr),, ar(p) € R, (4.160)

where the I’s are strictly increasing. Hence, any k-form can be written uniquely as a

sum
w= Z ardry, I strictly increasing, (4.161)

where each aj is a real-valued function on U. That is, a; : U — R.
Definition 4.39. The k-form w is C"(U) if each a; € C"(U).

Just to simplify our discussion, from now on we will always take k-forms that are

C*.
Definition 4.40. We define
QF(U) = the set of all C* k-forms. (4.162)

So, w € QF(U) implies that w = Y aydx;, where a; € C*(U).
Let us now study some basic operations on k-forms.

1. Let w € Q¥U) and let f € C®(U). Then fw € QF(U) is the k-form that maps

peU — f(p)w, € N*(T/R™). (4.163)

2. Let w; € Q¥(U), i = 1,2. Then w; + wy is the k-form that maps

pEU — (wi)p + (w2), € AMTIR™). (4.164)

3. Let w; € Q% (U), i = 1,2, and k = ky + ky. Then w; Awy € QF(U) is the k-form
that maps
pEU — (wi)p A (wa), € A¥(TIR™), (4.165)

since (w;), € A% (TyR™).

Definition 4.41. We find it convenient to define A°(T;R") = R.



A zero-form f on U is just a real-valued function, so Q°(U) = C®(R).
Take f € C>°(U) and df € Q'(U). This gives an operation

d: Q°U) — QYU), (4.166)
f— df. (4.167)
Let f,g € C*(U) (that is, take f, g to be zero-forms). Then d(fg) = gdf + fdg. We

can think of this operation as a slightly different notation for the gradient operation.
The maps d : Q¥(U) — Q¥YU), k = 0,...,(n — 1) give n vector calculus
operations.
If w € Q%(U), then w can be written uniquely as the sum

w= Z aydzy, I strictly increasing, (4.168)
where each a; € C*°(U). We define
dw=">"das A da;. (4.169)
This operator is the unique operator with the following properties:
1. For k = 0, this is the operation we already defined, df =) %dxi.
2. If w € QF, then d(dw) = 0.
3. If w; € QF(U),i = 1,2, then d(wy A wy) = dwy A ws + (—1)F1w; A dw,.
Let a € C*(U), and adx; € QF(U), I strictly increasing. Then
d(adxy) = da A dzy. (4.170)
Suppose that I is not strictly increasing. Then

drr = day, A+ Adzg
= A (4.171)
=0 if 2, = i,.

If there are no repetitions, then there exists ¢ € Sy such that J = [ is strictly
increasing. Then
dLIZ'J = (—1)0d$1, (4172)

SO
d(adzy) = (=1)7d(adz )
= (—1)%da N dz, (4.173)
= da N dxj.
Putting this altogether, for every multi-index I of length k,

d(adzy) = da N dx;. (4.174)



