
Lecture 24

We review the pullback operation from last lecture. Let U be open in Rm and let 

V be open in Rn . Let f : U → V be a C∞ map, and let f(p) = q. From the map 

dfp : TpRm TqRn , (4.212) → 

we obtain the pullback map 

(dfp)
∗ : Λk(Tq 

∗) → Λk(Tp 
∗) 

ω ∈ Ωk(V ) → f ∗ω ∈ Ωk(U). 
(4.213) 

We define, f ∗ωp = (dfp)
∗ωq, when ωq ∈ Λk(Tq 

∗). 
The pullback operation has some useful properties: 

1. If ωi ∈ Ωki(V ), i = 1, 2, then 

f ∗(ω1 ∧ ω2) = f ∗ω1 ∧ f ∗ω2. (4.214) 

2. If ω ∈ Ωk(V ), then 
df∗ω = f ∗dω. (4.215) 

We prove some other useful properties of the pullback operation. 

Claim. For all ω ∈ Ωk(W ), 
f ∗g∗ω = (g ◦ f)∗ω. (4.216) 

Proof. Let f(p) = q and g(q) = w. We have the pullback maps 

(dfp)
∗ :Λk(T ∗ 

q ) → Λk(T ∗ 
p ) (4.217) 

(dgq)
∗ :Λk(T ∗ 

w) → Λk(T ∗ 
q ) (4.218) 

(g ◦ f)∗ :Λk(T ∗ 
w) → Λk(T ∗ 

p ). (4.219) 

The chain rule says that 
(dg ◦ f)p = (dg)q ◦ (df)p, (4.220) 

so 
d(g ◦ f)∗ 

p = (dfp)
∗(dgq)

∗. (4.221) 

Let U, V be open sets in Rn, and let f : U → V be a C∞ map. 
pullback operation on n­forms ω ∈ Ωn(V ). Let f(0) = q. Then 

We consider the 

(dxi)p, i = 1, . . . , n, is a basis of T ∗ 
p , and (4.222) 

(dxi)q, i = 1, . . . , n, is a basis of T ∗ 
q . (4.223) 
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Using fi = xi ◦ f , 

(dfp)
∗(dxi)q = (dfi)p � ∂fi (4.224) 

= (p)(dxj)p. 
∂xj 

In the Multi­linear Algebra notes, we show that 

∂fi
(dfp)

∗(dx1)q ∧ · · · ∧ (dxn)q = det 
∂xj 

(p) (4.225) (dx1)p ∧ · · · ∧ (dxn)p. 

So, � � 
∂fi 

= det (4.226) f ∗dx1 ∧ · · · ∧ dxn 
∂xj 

dx1 ∧ · · · ∧ dxn. 

Given ω = φ(x)dx1 ∧ · · · ∧ dxn, where φ ∈ C∞, 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (4.227) 

5 Integration with Differential Forms 

Let U be an open set in Rn, and let ω ∈ Ωk(U) be a differential k­form. 

Definition 5.1. The support of ω is 

supp ω = {p ∈ U : ωp = 0}. (5.1) 

Definition 5.2. The k­form ω is compactly supported if supp ω is compact. We define 

Ωc
k(U) = the space of all compactly supported k­forms. (5.2) 

Note that 
Ωc 

0(U) = C0
∞(Rn). (5.3) 

Given ω ∈ Ωn
c (U), we can write 

ω = φ(x)dx1 ∧ · · · ∧ dxn, (5.4) 

where φ ∈ C0
∞(U). 

Definition 5.3. � � � 
φ = φ(x)dx1 . . . dxn. (5.5) 

U 

ω ≡ 
U U 
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We are going to state and prove the change of variables theorem for integrals of 
differential k­forms. To do so, we first need the notions of orientation preserving and 
orientation reversing. 

Let U, V be open sets in Rn . Let f : U → V be a C∞ diffeomorphism. That is, 
for every p ∈ U , Df(p) : Rn Rn is bijective. We associate Df(p) with the matrix → 

Df(p) ∼ ∂fi 
(p) . (5.6) = 

∂xj 

The map f is a diffeomorphism, so 

∂fi
det (p) = 0. (5.7) 

∂xj 
�

So, if U is connected, then this determinant is either positive everywhere or negative 
everywhere. 

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The 
map f is orientation reversing if det < 0 everywhere. 

The following is the change of variables theorem: 

Theorem 5.5. If ω ∈ Ωn
c (V ), then 

f ∗ω = ω (5.8) 
U V 

if f is orientation preserving, and 

f ∗ω = ω (5.9) − 
VU 

if f is orientation reversing. 

In Munkres and most texts, this formula is written in slightly uglier notation. Let 
ω = φ(x)dx1 ∧ · · · ∧ dxn, so 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (5.10) 

The theorem can be written as following: 

Theorem 5.6. If f is orientation preserving, then 

∂fi
φ = φ f det . (5.11) ◦

∂xjV U 
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This is the coordinate version of the theorem. 
We now prove a useful theorem found in the Supplementary Notes (and Spivak) 

called Sard’s Theorem. 
Let U be open in Rn, and let f : U → Rn be a C1(U) map. For every p ∈ U , we 

have the map Df(p) : Rn Rn . We say that p is a critical point of f if Df(p) is not→
bijective. Denote 

Cf = the set of all critical points of f. (5.12) 

Sard’s Theorem. The image f(Cf ) is of measure zero. 

Proof. The proof is in the Supplementary Notes. 

As an example of Sard’s Theorem, let c ∈ Rn and let f : U Rn be the map →
defined by f(x) = c. Note that Df(p) = 0 for all p ∈ U , so Cf = U . The set Cf = U 
is not a set of measure zero, but f(Cf ) = c} is a set of measure zero. {

As an exercise, you should prove the following claim: 

Claim. Sard’s Theorem is true for maps f : U Rn, where U is an open, connected →
subset of R. 

Proof Hint: Let f ∈ C∞(U) and define g = ∂f . The map g is continuous because 
∂x 

1(U). Let I = [a, b] ⊆ U , and define � = b − a. The continuity of g implies that f ∈ C
g is uniformly continuous on I. That is, for every � > 0, there exists a number N > 0 
such that g(x)− g(y) < � whenever x, y ∈ I and x − y < �/N .| | | |

Now, slice I into N equal subintervals. Let Ir, r = 1, . . . , k ≤ N be the subintervals 
intersecting Cf . Prove the following lemma: 

Lemma 5.7. If x, y ∈ Ir, then f(x)− f(y) < ��/N .| |

Proof Hint: Find c ∈ Ir such that f(x)−f(y) = (x−y)g(c). There exists c0 ∈ Ir ∩Cf 
if and only if g(c0) = 0. So, we can take 

g(c) = g(c)− g(c0) ≤ �. (5.13) | | | |

Then f(x)− f(y) ≤ ��/N .| |

From the lemma, we can conclude that 

f(Ir) ≡ Jr (5.14) 

is of length less than ��/N . Therefore, 

k

 
f(Cf ∩ I) ⊂ Jr (5.15) 

r=1 

is of length less than 
�� ��N 

N 
k ≤ 

N 
= ��. (5.16) 
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Letting �→ 0, we find that F (Cf ∩ I) is of measure zero. 
To conclude the proof, let Im,m = � 1, 2, 3, . . . , be an exhaustion of U by closed 

intervals I1 ⊂ I2 ⊂ I3 ⊂ · · · such that Im = U . We have shown that f(Cf ∩ Im) is � 
measure zero. So, f(Cf ) = f(Cf ∩ Im) implies that f(Cf ) is of measure zero. 
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