Lecture 24

We review the pullback operation from last lecture. Let U be open in R™ and let
V be open in R™. Let f: U — V be a C* map, and let f(p) = ¢. From the map

df, : T,R™ — T,R", (4.212)
we obtain the pullback map
(dfy)™ : AM(Ty) — AN(T})

L . (4.213)
weQ(V) — ffweQ¥U).
We define, f*w, = (df,)*w,, when w, € A*(T).
The pullback operation has some useful properties:
1. Ifw; € Q%(V),i=1,2, then
f*(wl A u)2> == f*w1 VAN f*u)g. (4214)
2. If w € QF(V), then
df*w = f*dw. (4.215)
We prove some other useful properties of the pullback operation.
Claim. For all w € QF(W),
ffgw=(go f)w. (4.216)
Proof. Let f(p) = q and g(q) = w. We have the pullback maps
(df,)" :AM(T) — AM(T) (4.217)
(dge)* :A¥(T) — AM(TY) (4.218)
(go ) AMTy) — AM(TY). (4.219)
The chain rule says that
(dg o f)p = (dg)q o (df)y, (4.220)
SO
d(g o f); = (dfp)*(dgq)*' (4.221)
O

Let U,V be open sets in R", and let f : U — V be a C>* map. We consider the
pullback operation on n-forms w € Q*(V). Let f(0) = ¢. Then

(dzi)p, i=1,...,n, isabasisof T, and (4.222)
(dzi)g, i=1,...,n, isa basis of T} . (4.223)



Using f; = i 0 f,

(dfp)"(dxi)q = (dfi)p

f; (4.224)
In the Multi-linear Algebra notes, we show that
(dfy)*(dz1)g A -+ A (dxy,)q = det B (p)| (dz1)p A -+ A (dxy)p. (4.225)
J
So,
frdxy A+ Ndx, = det dry A - Ndxy,. (4.226)
aﬂfj
Given w = ¢(x)dxy A - -+ A dx,, where ¢ € C™,
ffw=o(f(x))det pe dxy N\ -+ Ndx,. (4.227)
J
5 Integration with Differential Forms
Let U be an open set in R”, and let w € Q*(U) be a differential k-form.
Definition 5.1. The support of w is
supp w ={p € U : w, # 0}. (5.1)

Definition 5.2. The k-form w is compactly supported if supp w is compact. We define
QF(U) = the space of all compactly supported k-forms. (5.2)

Note that
Q(U) = C5°(R™). (5.3)

Given w € Q2(U), we can write
w=¢(z)dxy A--- Ndzy, (5.4)
where ¢ € C°(U).

Definition 5.3.

/UwE/U¢:/U¢(x)dx1...dxn. (5.5)



We are going to state and prove the change of variables theorem for integrals of
differential k-forms. To do so, we first need the notions of orientation preserving and
orientation reversing.

Let U,V be open sets in R". Let f: U — V be a C* diffeomorphism. That is,
for every p € U, Df(p) : R — R" is bijective. We associate D f(p) with the matrix

dfi
Df(p) = [ o ,<p>} . (5.6)
The map f is a diffeomorphism, so
det Bi @)} £0. (5.7)

So, if U is connected, then this determinant is either positive everywhere or negative
everywhere.

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The
map f is orientation reversing if det < 0 everywhere.

The following is the change of variables theorem:

Theorem 5.5. If w € Q2(V), then

Aﬁwzﬁw (5.8)

if fis orientation preserving, and

Aﬁw——Lw (5.9)

In Munkres and most texts, this formula is written in slightly uglier notation. Let
w=¢(x)dry A+ Ndxy, O

if fis orientation reversing.

o= o)) det | 3F

Lj

} dxy A - Ndx,. (5.10)

The theorem can be written as following:

Theorem 5.6. If f is orientation preserving, then

o foorsa

] . (5.11)



This is the coordinate version of the theorem.
We now prove a useful theorem found in the Supplementary Notes (and Spivak)

called Sard’s Theorem.

Let U be open in R™, and let f : U — R™ be a C(U) map. For every p € U, we
have the map Df(p) : R™ — R"™. We say that p is a critical point of f if Df(p) is not
bijective. Denote

Cy = the set of all critical points of f. (5.12)

Sard’s Theorem. The image f(Cy) is of measure zero.
Proof. The proof is in the Supplementary Notes. O

As an example of Sard’s Theorem, let ¢ € R™ and let f : U — R” be the map
defined by f(z) = c¢. Note that Df(p) =0 for all p € U, so Cy = U. The set Cy =U
is not a set of measure zero, but f(Cy) = {c} is a set of measure zero.

As an exercise, you should prove the following claim:

Claim. Sard’s Theorem is true for maps f : U — R", where U is an open, connected
subset of R.

Proof Hint: Let f € C*°(U) and define g = %. The map ¢ is continuous because
f eCU). Let I =[a,b] C U, and define ¢ = b — a. The continuity of g implies that
g is uniformly continuous on I. That is, for every € > 0, there exists a number N > 0
such that |g(z) — g(y)| < € whenever x,y € I and |z —y| < {/N.

Now, slice I into N equal subintervals. Let I, =1,...,k < N be the subintervals
intersecting C'y. Prove the following lemma:

Lemma 5.7. If z,y € I, then |f(z) — f(y)| < el/N.

Proof Hint: Find ¢ € I, such that f(z)— f(y) = (x—y)g(c). There exists ¢y € I, NCy
if and only if g(cp) = 0. So, we can take

g9(c)] = lg(c) — g(co)| < €. (5.13)

Then |f(z) — f(y)| < el/N. O
From the lemma, we can conclude that

) =7 (5.14)

is of length less than e//N. Therefore,

k

fiernncl (5.15)
r=1
is of length less than
el el N
—k < — =€l 1
Nk < el (5.16)



Letting € — 0, we find that F'(Cy N 1) is of measure zero.

To conclude the proof, let I,,,m = 1,2,3,..., be an exhaustion of U by closed
intervals Iy C Iy C I3 C --- such that |JI,, = U. We have shown that f(C; N I,,) is
measure zero. So, f(Cy) =J f(Cy N I,) implies that f(Cy) is of measure zero. [



