Lecture 26

We continue our study of forms with compact support. Let us begin with a review.
Let U € R™ be open, and let

w=>_fr(z1,... z)d, (5.48)
I
where I = (i1, ...,14) is strictly increasing and dx; = dz;, A --- A dx;,. Then
w is compactly supported <= every f; is compactly supported. (5.49)
By definition,
supp fr={x € U : fi(x) # 0}. (5.50)
We assume that the f;’s are C? maps.
Notation.
QF(U) = space of compactly supported differentiable k-forms on U. (5.51)

Now, let w € Q2(U) defined by
w= f(zy,...,zp)dxy A+ ANdzy, (5.52)

where f € Q%(U). Then

/ w= flzy, . xn)dey A A dxy,. (5.53)
n R"L

Last time we proved the Poincare Lemma for open rectangles R in R". We assumed
that w € Q(Int R). That is, we assumed that w € Q(R") such that supp w C Int R.
We showed that for such w the following two conditions are equivalent:

L. [paw =0,
2. There exists a u € Q77! (Int R) such that du = 0.

Definition 5.9. Whenever w € QF(U) and w = dpu for some pu € Q¥1(U), we say
that w is ezact.

Definition 5.10. Whenever w € Q¥(U) such that dw = 0, we say that w is closed.

Observe that
weU) = dw=0. (5.54)

Now we prove the Poincare Lemma for open connected subsets of R".



Poincare Lemma. Let U be a connected open subset of R", and let w € Q2 (U). The
following conditions are equivalent:

1. [,w=0,
2. w=du, for some p € Q1(U).

Proof. We prove this more general case by reducing the proof to the case where U is
a rectangle, which we proved in the previous lecture.

First we prove that (2) implies (1). We can choose a family of rectangles {R;,i €
N} such that

U=|Jnt R; (5.55)
ieN

Since the support of i is compact, the set supp p is covered by finitely many of the
rectangles.

We take a partition of unity {¢;,7 € N} subordinate to {R;}, so that

N

= ¢ipv )supported on Int R; (5.56)

— N~
=1

/du = Z/ d(ife). (5.57)

Each term on the r.h.s is zero by the Poincare Lemma we proved last lecture.
We now prove the other direction, that (1) implies (2). It is equivalent to show

that if wy,ws € Q2(U) such that
/w1 _ /wQ, (5.58)

then w; ~ wy, meaning that there exists a form p € Q71 (U) such that w; = wy + dp.
Choose a partition of unity {¢;} as before. Then

Then

(5.59)

&
I
=

piw
~—~
supported on Int R;

Let

/w _ceR, (5.60)

and

/gbiw = ¢ (5.61)



Choose a form wq such that

/ wo = 1 (5.62)

and such that supp wy € Q)9 = R; for some j. Then

/ o :/ ciwy (5.63)

supported in R; supported in Qo
We want to show that there exists p; € Q?1(U) such that ¢;w = c;w; + du;.
Now we use the fact that U is connected. We use the following lemma.

Lemma 5.11. Let U be connected. Given rectangles R; such that supp ¢;w C Int R;,
and given a fized rectangle Qo and any point x € U, there exists a finite sequence
of rectangles Ry, ..., Ry with the following properties: Qo = Ry, x € Int Ry, and
(Int R;) N (Int R;41) is non-empty.

We omit the proof of this lemma.

Now, define w; = ¢;w, so
/wi = /CZUJQ. (564)

supp (c;wo) C Int (Qo) (5.65)
supp (w;) C Int (R;). (5.66)

Note that

Choose forms v; such that supp v; C Int R; N Int R;,; and such that

/W:L (5.67)

supp (v; — vip1) C Int R4y (5.68)

This implies that

By definition,
Jwi=v) =0 (5.69)

By the Poincare Lemma we proved last time, v; ~ v;,1, so there exists y; € Q"= (U)
such that v; = v;11 + dp;.
So,

CiW ~ Cilg ~ CiUL ~ ...~ CGUN ~ Qjw. (5.70)

]



5.2 Proper Maps and Degree

We introduce a class of functions that remain compactly supported under the pullback
operation.

Definition 5.12. Let U C R" and V C R*, and let f : U — V be a continuous map.
The map f is proper if for all compact subsets K C V, the set f~(K) is compact.

Let U CR" and V C R¥ and let f : U — V be a continuous map. Also let
w € QF(V). The map

Q) = Q¥D) (5.71)
is defined such that
w=9gU1,-- Yn)dyy N ... ANdy;, — [fw=g(f(x))dfiy, A---df;,. (5.72)
So,
S~ (supp w) 2 supp (f*w). (5.73)

If f is proper and w € Q%(V'), then supp (f*w) is compact, in which case the map f*
is actually of the form

k) = QD). (5.74)
That is, w € QX(V) — f*w € Q2(U). So, it makes sense to take the integral
/f*w = (degf)/ w. (5.75)
U v

Theorem 5.13. Let U,V be connected open subsets of R™, and let f : U — V be a
C* map. For allw € Q(V),

*w=(d . 5.76
| rro=taeen [ o (5.76)
Proof. Take wy € Q(V) such that
/ o =1. (5.77)
Define
deg f = /f*wo, (5.78)

and suppose that

/ b= (5.79)
/ o= / . (5.80)

Then

SN



By the Poincare Lemma, w ~ cwy. That is, there exists yu € Q" 1(V) such that

w = cwy + dp. Then
[rw= f*(cwo) + f*(dp)
= [*(cwo) +d(f" 1),
which shows that f*w ~ f*(cwp). Putting this altogether,

[ o= [ e
:c/f*wg

=cdeg f
= (/w) deg f.

We had w = g(y1, .-, yn)dys A -+ A dyy, so
ffw=g(f(x)dfy A Ndfn

— g(f(2)) det Pfl’

8.Tj
where we used the fact that

0f;
Z 8% dl’j

Restated in coordinates, the above theorem says that

/Ug(f(:c)) det(Df)dxzy A -+ Adxy,

:|d$1/\"-/\dxn,

(5.81)

(5.82)

(5.83)

(5.84)

=(degf)/vg(y1,.--,yn)dy1/\---/\dyn. (5.85)

Claim. Given proper maps f:V — W and g : U — V, where U, V,W are connected

open subsets of R™,
deg(fg) = (deg g)(deg f).

Proof. Note that (f og)* = ¢g* o f*, so

deg(fog)/WWZ/U(fog)*w
Z/Vg*(f*w)
:(degg)/vf*w

= (deg g)(deg f) / w

w

(5.86)

(5.87)



