Lecture 3

2 Differentiation

2.1 Differentiation in n dimensions

We are setting out to generalize to n dimensions the notion of differentiation in one-
dimensional calculus. We begin with a review of elementary one-dimensional calculus.
Let I C R be an open interval, let f : I — R be a map, and let a € I.

Definition 2.1. The derivative of f at a is

o)ty 0D = (@ o)
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provided that the limit exists. If the limit exists, then f is differentiable at a.

There are half a dozen or so possible reasonable generalizations of the notion
of derivative to higher dimensions. One candidate generalization which you have
probably already encountered is the directional derivative.

Definition 2.2. Given an open set U in R", amap f: U — R™, a point a € U, and
a point u € R", the directional derivative of f in the direction of u at a is
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provided that the limit exists.

In particular, we can calculate the directional derivatives in the direction of the
standard basis vectors eq, ..., e, of R", where

er = (1,0,...,0), (2.3)
e; = (0,1,0,...,0), (2.4)

: (2.5)
e, = (0,...,0,1). (2.6)

Notation. The directional derivative in the direction of a standard basis vector e; of

R"™ is denoted by
0

&ci

D;f(a) = De, f(a) = 5—f(a). (2.7)

We now try to answer the following question: What is an adequate definition of
differentiability at a point a for a function f: U — R™?



e Guess 1: Require that 2L (a) exists.

However, this requirement is inadequate. Consider the function defined by

0, if li th -axi th -axi
Fonaa) = 42 i (iL‘l,J?g) ies on the x-axis or the wo-axis, (2.8)
1, otherwise.
Then, both
of of
—(0)=0and =—(0) =0 2.9
L) =0and 220 -0, (2.9

but the function f is not differentiable at (0,0) along any other direction.

e Guess 2: Require that all directional derivatives exist at a.

Unfortunately, this requirement is still inadequate. For example (from Munkres
chapter 5), consider the function f: R? — R defined by

Claim. The directional derivative D, f(0) ezists for all u.

Proof. Let u = (h,k). Then
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)0, h=0
| k2/h, h#£0.
So the limit exists for every w. m

However, the function is a non-zero constant on a parabola passing through the
.. 4 .. .
origin: f(t?,t) = L3 = 1 except at the origin where f(0,0) = 0. The function f
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is discontinuous at the origin despite the existence of all directional derivatives.

e Guess 3. This guess will turn out to be correct.
Remember than in one-dimensional calculus we defined

) — i LD = (0
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: (2.12)

for a function f : I — R and a point a € I. Now consider the function
A : R — R defined by

A(t) = f'(a)t. (2.13)



Then,

po Flat D) = fl@) =A@ _ . flatt)— fla)
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=0.
So, A(t) = f(a+t) — f(a) when ¢ is small.
Now we generalize to n dimensions.

Definition 2.3. Given an open subset U of R", amap f: U — R™, and a
point a € U, the function f is differentiable at a if there exists a linear mapping
B : R" — R™ such that for every h € R" — {0},

fla+h) — f(a) — Bh
Al

— 0 as h — 0. (2.15)

That is, f(a + h) — f(a) & Bh when h is small.

Theorem 2.4. If f is differentiable at a, then for every u the directional derivative
of f in the direction of u at a exists.

Proof. The function f is differentiable at a, so

fla+tu) — fla) = B(tu)

ul —0ast—0. (2.16)
Furthermore,
fla+tu) = fla) = B(tu) _ t fla+tu)— f(a) — B(tu)
|tu) - |tu t
_t1 (f(a—i—tu) —fla) Bu) (2.17)
2] ul t
— 0,
ast — 0, so
fla+tu) = fla) — Bu ast — 0. (2.18)
t
0

Furthermore, the linear map B is unique, so the following definition is well-defined.

Definition 2.5. The derwative of f at a is Df(a) = B, where B is the linear map
defined above.

Note that Df(a) : R — R™ is a linear map.



Theorem 2.6. If f is differentiable at a, then f is continuous at a.

Sketch of Proof. Note that for h # 0 in R",
fla+h)— f(a) — Bh

7 —0ash—0 (2.19)

implies that
fla+h)— f(a) — Bh— 0 as h — 0. (2.20)
From this you can conclude that f is continuous at a. ]

Remark. Let L : R" — R™ be a linear map and a € R™. The point a can be written
as a sum a = ) aje; = (a,...,a,). The point La can be written as the sum
La =) ajLe;, and L can be written out in components as L = (Ly,..., L,,), where
each L; : R” — R is a linear map. Then Le; = (Ly,¢j,..., Lne;), and Lie; = ¢, ;.

The numbers ¢; ; form an n x n matrix denoted by [¢; ;].

Remark. Let U C R", and let f; : R® — R™ and f; : R” — R™2 be differentiable
maps. Let m = mj + ma, so that R™ x R™2 = R™. Now, construct a function
f:R™ — R™ defined in component form by f = (f1, f2). The derivative of f at a is

Df(a) = (Dfi(a), D fa(a)). (2.21)

Remark. Let f : U — R™ be a map. The action of f on input x written out in
component form is f(z) = (fi(z),..., fm(z)). So, the map can be represented in
component form as f = (f1,..., fm), where each f; as a map of the form f; : U — R.
The derivative of f acting on the standard basis vector e; is

Df(a)e; = (Dfi(a)e;,...,Dfn(a)e;)

fr O fm 2.22
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So, the derivative (D f)(a) can be represented by an m x n matrix
dfi
(D))= Jsla) = | ) (229

called the Jacobian matrix of f at a, which you probably recognize.





