
Lecture 30


6 Manifolds 

6.1	 Canonical Submersion and Canonical Immersion Theo­
rems 

As part of today’s homework, you are to prove the canonical submersion and im­
mersion theorems for linear maps. We begin today’s lecture by stating these two 
theorems. 

Let A : Rn Rm be a linear map, and let [aij] be its associated matrix. We have →
the transpose map At : Rm Rn with the associated matrix [aji].→ 

Definition 6.1. Let k < n. Define the canonical submersion map π and the canonical 
immersion map ι as follows: 

Canonical submersion: 

π : Rn → Rk , (x1, . . . , xn) → (x1, . . . , xk).	 (6.1) 

Canonical immersion: 

ι : Rk → Rn , (x1, . . . , xk) → (x1, . . . , xk, 0, . . . , 0). (6.2) 

Canonical Submersion Thoerem. Let A : Rn Rk be a linear map, and suppose →
that A	 is onto. Then there exists a bijective linear map B : Rn Rn such that→
A B = π.◦ 

Proof Hint: Show that there exists a basis v1, . . . , vn of Rn such that Avi = ei, i = 
1, . . . , k, (the standard basis of Rk) and Avi = 0 for all i > k. Then let B : Rn Rn →
be the linear map Bei = vi, i = 1, . . . , n, where ei, . . . , en is the standard basis of 
Rn . 

Canonical Immersion Thoerem. As before, let k < n. Let A : Rk Rn be a 
one­to­one linear map. Then there exists a bijective linear map B : Rn 

→ 
Rn such→

that B A = ι.◦ 

tBtProof Hint: Note that B A = ι A = π. Use the Canonical Submersion ◦ ⇐⇒ 
Theorem. 

Now we prove non­linear versions of these two theorems.

Let U be an open set in Rn, and let f : U → Rk be a C ∞ map. Let p ∈ U .


Definition 6.2. The map f is a submersion at p if Df(p) : Rn Rk is onto. → 
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Canonical Submersion Thoerem. Assume that f is a submersion at p and that 
f(p) = 0. Then there exists a neighborhood U0 of p in U , a neighborhood V of 0 in 
Rn, and a diffeomorphism g : V → U0 such that f ◦ g = π. 

Proof. Let Tp : Rn → Rn be the translation defined by x → x + p. Replacing f by 
f ◦ Tp we can assume that p = 0 and f(0) = 0. 

Let A = (Df)(0), where A : Rn Rk is onto by the assumption that f is a →
submersion. So, there exists a bijective linear map B : Rn Rn such that A B = π.→ ◦
Replacing f by f ◦ B we can assume that Df(0) = π. 

Define a map h : U Rn by → 

h(x1, . . . , xn) = (f(x1, . . . , xk); xk+1, . . . , xn). (6.3) 

Note that (1)Dh(0) = I; and (2) πh = f . By (1), the function hmaps a neighborhood 
U0 of 0 in U diffeomorphically onto a neighborhood V of 0 in Rn . By (2), we have 
π = f h−1 . Take g = h−1 .◦ 

There is a companion theorem having to do with immersions. 

Definition 6.3. Let U be an open subset of Rk, and let f : U → Rn be a C∞ map. 
Let p ∈ U . The map f is an immersion at p if (Df)(p) : Rk Rn is injective →
(one­to­one). 

Canonical Immersion Thoerem. Let U be a neighborhood of 0 in Rk, and let 
f : U → Rn be a C∞ map. Assume that f is an immersion at 0. Then there exists a 
neighborhood V of f(0) = p in Rn, a neighborhood W of 0 in Rk, and a diffeomorphism 
g : V → W such that ι−1(W ) ⊆ U and g ◦ f = ι. 

Proof. Replacing f by Tp ◦ f , we can assume that f(0) = 0. Let A = Df(0), so 
A : Rk Rn is injective. There exists a linear map B : Rn Rn such that BA = ι.→ →
Replacing f by B ◦ f , we can assume that Df(0) = ι. 

Let � = n − k. Since U ⊆ Rk, we get U × R� ⊆ Rk × R� = Rn . Define a map 
h : U × R� Rn by → 

h(x1, . . . , xn) = f(x1, . . . , xk) + (0, . . . , 0, xk+1, . . . , xn). (6.4) 

One can check that (1) Dh(0) = I; and (2) h ι = f .◦
By (1), the function h maps a neighborhood W of 0 in U × R� diffeomorphically 

onto a neighborhood V of 0 in Rn . Moreover, W ⊆ U × R�, so ι−1(W ) ⊆ U . 
By (2), we obtain the canonical immersion map ι = h−1 f . Take g = h−1 .◦ 
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6.2 Definition of Manifold 

Now we move on to the study of manifolds. 
Let X be a subset of Rn, let Y be a subset of Rm, and let f : X Y be a →

continuous map. We define that the map f is a C∞ map if for every point p ∈ X 
there exists a neighborhood Up of p in Rn and a C∞ map gp : U Rn such that p → 
gp X ∩ Up = f .|

We showed in the homework that if f : X → Y is a C∞ map, then there exists a 
neighborhood U of X in Rn and a C∞ map g : U Rn extending f .→ 

Definition 6.4. A map f : X → Y is a diffeomorphism if it is one­to­one, onto, a 
C∞ map, and f−1 : Y → X is C∞. 

Let X be a subset of RN . 

Definition 6.5. The set X is an n­dimensional manifold if for every point p ∈ X 
there exists a neighborhood V of p in RN , an open set U in Rm, and a diffeomorphism 
f : U → V ∩ X. The collection (f, U,X) is called a parameterization of X at p. 

This definition does not illustrate how manifolds come up in nature. Usually 
manifolds come up in the following scenario. 

Let W be open in RN , and let fi : W → R, i = 1, . . . , � be C∞ functions. Suppose 
you want to study the solution space of 

fi(x1, . . . , xN) = 0, i = 1, . . . , �. (6.5) 

Then you consider the mapping f : W R� defined by → 

f(x) = (f1(x), . . . , f�(x)). (6.6) 

Claim. If for every p ∈ W the map f is a submersion of p, then Equation 6.6 defines 
a k­dimensional manifold, where k = N − �. 
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