Lecture 31

6.3 Examples of Manifolds

We begin with a review of the definition of a manifold.
Let X be a subset of R", let Y be a subset of R™, and let f : X — Y be a

continuous map.

Definition 6.6. The map f is C* if for every p € X, there exists a neighborhood U,
of pin R” and a C* map g, : U, — R™ such that g, = f on U, N X.

Claim. If f : X — Y s continuous, then there exists a neighborhood U of X in R"™
and a C>* map g: U — R™ such that g = f on U N X.

Definition 6.7. The map f : X — Y is a diffeomorphism if it is one-to-one, onto,
and both f and f~! are C* maps.

We define the notion of a manifold.

Definition 6.8. A subset X of R is an n-dimensional manifold if for every p € X,

there exists a neighborhood V of p in RY, an open set U in R", and a diffeomorphism
o:U—-XNV.

Intuitively, the set X is an n-dimensional manifold if locally near every point
p € X, the set X “looks like an open subset of R™.”

Manifolds come up in practical applications as follows:

Let U be an open subset of RV, let k& < N, and let f : RY — RF be a C* map.

Suppose that 0 is a regular value of f, that is, f~1(0) N Cy = ¢.
Theorem 6.9. The set X = f~1(0) is an n-dimensional manifold, where n = N —k.

Proof. 1f p € f71(0), then p ¢ C;. So the map Df(p) : RY — R* is onto. The map
f is a submersion at p.

By the canonical submersion theorem, there exists a neighborhood V of 0 in R"™,
a neighborhood Uy of p in U, and a diffeomorphism ¢ : V' — U such that

fog=m. (6.7)

Recall that RY = R x R” and 7 : RY — R* is the map that sends
(z,y) € R* x R" — R, (6.8)
Hence, 771(0) = {0} x R® = R™. By Equation 6.7, the function g maps V N 7=1(0)

diffeomorphically onto Uy N f~1(0). But V N7~1(0) is a neighborhood of 0 in R™ and
Uy N f71(0) is a neighborhood of p in X. O



We give three examples of applications of the preceding theorem.

1. We consider the n-sphere S™. Define a map
R SR, fr)=ai+... 425, L (6.9)

The derivative is (Df)(z) = 2[x1,...,Tny1], s0 Cp = {0}. If a € f71(0), then
S>a?=1,s0a¢ Cy. Thus, the set f~1(0) = S™ is an n-dimensional manifold.

2. Let g : R" — R* be a C* map. Define
X = graph g = {(2,9) € R" x R* : y = g(2)}. (6.10)
Note that X C R x RF = Rk,

Claim. The set X is an n-dimensional manifold.

Proof. Define a map f : R" x R¥ — R* by

flzy) =y —g(x). (6.11)
Note that Df(z,y) = [-Dg(x), I]. This is always of rank k, so C'y = ¢. Hence,
the graph g is an n-dimensional manifold. O

3. The following example comes from Munkres section 24, exercise #6. Let

M,, = the set of all n x n matrices, (6.12)
S0
M, = R". (6.13)
With any element [a;;] in M,, we associate a vector
(all,...7a1n,(1,21,...,a2n,...). (614)
Now, let
S,={AeM,: A= A"}, (6.15)
i (n+1)
Sy =R™T (6.16)

With any element [a;;] in S,, we associate a vector

(Gn, coey Qip, 22,323, . . ., G2, A33, A34, - - - ) (6'17)

The above association avoids the “redundancies” a5 = as1, az; = a3, azs = ao3,
etc.

Define
On)={AeM, :AtA:I}, (6.18)

which is the set of orthogonal n x n matrices.

As an exercise, the student should prove the following claim.



Claim. The set O(n) C M,, is an @—dimensional manifold.
Proof Hint: First hint: Let f : M, — &, be the map defined by
f(A)=A"A -1, (6.19)

so O(n) = f~*(0). Show that f~'(0) N C; = ¢. The main idea is to show that
if A¢ f71(0), then the map Df(A): M, — S, is onto.

Second hint: Note that D f(A) is the map the sends B € M,, to A'B+B'A. [

Manifolds are often defined by systems of non-linear equations:

Let f: RY — R* be a continuous map, and suppose that Cy N f~1(0) = ¢. Then
X = f71(0) is an n-dimensional manifold. Suppose that f = (f1,..., fx). Then X is
defined by the system of equations

fi(l’l,...,ZEN):O, 2217,]€ (620)
This system of equations is called non-degenerate, since for every x € X the matrix

[Sg{] (x)} (6.21)

is of rank k.

Claim. Every n-dimensional manifold X C RN can be described locally by a system
of k mon-degenerate equations of the type above.

Proof Idea: Let X C RY be an n-dimensional manifold. Let p € X, let U be an open

subset of R”, and let V be an open neighborhood of p in RN, Let ¢ : I — V NX
be a diffeomorphism. Modifying ¢ by a translation if necessary we can assume that
0 € U and ¢(0) = p. We can think of ¢ as a map ¢ : U — RY mapping U into X.

Claim. The linear map (D¢)(0) : R™ — RY is injective.

Proof. The map ¢! : VNX — U is a C*® map, so (shrinking V if necessary) we can
assume there is a C*®* map ¢ : V — U with ) = ¢! on V N X. Since ¢ maps U onto
V NX, we have 1) o ¢ = ¢! o ¢ = I = the identity map of U onto itself. Thus,

I'=D(¢0¢)(0) = (Dy)(p)(D¢)(0). (6.22)
That is, Di(p) is a “left inverse” of D¢(0). So, D¢(0) is injective. O



We can conclude that ¢ : U — R is an immersion at 0. The canonical immersion
theorem tells us that there exists a neighborhood Uy of 0 in U, a neighborhood V,, of p
in V, and a C*® map g : V, — RY mapping p onto 0 and mapping V}, diffeomorphically
onto a neighborhood O of 0 in RY such that

HO) = U, (6.23)
and
goop =1 (6.24)
on Uy. Here, the map ¢ is the canonical submersion map ¢ : R* — RY that maps
(X1, ..., 2n) — (21,...,2,,0,...,0).

By Equation 6.24, the function g maps ¢(Uy) onto ¢(Uy). However, by Equa-
tion 6.23, the set t(Up) is the subset of O defined by the equations

2;=0, i=n+1,...,N. (6.25)

So, if g = (g1, ..., 9n), then ¢(Up) = X NV, is defined by the equations

9i=0, i=n+1,...,N. (6.26)
Moreover, the N x N matrix
9gi
6.27
{axj (x)} ( )

is of rank NV at every point x € V), since g : V, — O is a diffeomorphism. Hence, the
last N — n row vectors of this matrix

( 0y 09

8.1’1’.“781‘]\7

),i:n+L“wN, (6.28)

are linearly independent at every point x € V,.
Now let k = N —n and let f; = gitn, ¢ =1,..., k. Then X NV, is defined by the
equations

filx) =0, i=1,... k, (6.29)
and the £ x N matrix
Afi
6.30
o) (6:30)
is of rank £ at all points € V. In other words, the system of equations 6.29 is
non-degenerate. O]



