Lecture 32

6.4 Tangent Spaces of Manifolds

We generalize our earlier discussion of tangent spaces to tangent spaces of manifolds.
First we review our earlier treatment of tangent spaces.
Let p € R™". We define

T,R" ={(p,v) : v € R"}. (6.31)

Of course, we associate T,R" = R™ by the map (p,v) — v.

If U is open in R™, V is open in R* and f : (U,p) — (V,q) (meaning that f
maps U — V and p — py) is a C* map, then we have the map df, : T,R" — T,R*.
Via the identifications T,R" = R" and T,R* = R* the map df, is just the map
Df(p) : R — R*. Because these two maps can be identified, we can use the chain
rule for C* maps. Specifically, if f : (U,p) — (V,q) and g : (V,q) — (R, w), then

d(go f)p = (dg)q o (df)y, (6.32)

because (Dg)(q)(Df(p)) = (Dyg o f)(p).
You might be wondering: Why did we make everything more complicated by using

df instead of Df? The answer is because we are going to generalize from Euclidean
space to manifolds.

Remember, a set X C RY is an n-dimensional manifold if for every p € X, there
exists a neighborhood V of p in RY, an open set U in R", and a diffeomorphism
¢:U—-VNX. Themap ¢ : U — V N X is called a parameterization of X at p.

Let us think of ¢ as a map ¢ : U — RY with Im ¢ C X.

Claim. Let ¢~'(p) = q. Then the map (d¢), : T,R™ — T,RY is one-to-one.

Reminder of proof: The map ¢~ : VN X — U is a C*° map. So, shrinking V if
necessary, we can assume that this map extends to a map ¢ : V. — U such that
¥ = ¢~ on X NV. Then note that for any u € U, we have )(¢(u)) = ¢~ (d(u)) = u.
So, ¥ o ¢ = idy = the identity on U.

Using the chain rule, and letting ¢(q) = p, we get

d(v o ¢)g = (d))o o (dg),
= (d(idU))cr

So, (d¢), is injective. O

(6.33)

Today we define for any p € X the tangent space T,X, which will be a vector
subspace T,X C T,RY™. The tangent space will be like in elementary calculus, that
is, a space tangent to some surface.

Let ¢ : U — V N X be a parameterization of X, and let ¢(q) = p. The above
claim tells us that (d¢), : T,R" — T,R" is injective.



Definition 6.10. We define the tangent space of a manifold X to be
T,X = Im (d¢),. (6.34)

Because (d¢), is injective, the space T, X is n-dimensional.

We would like to show that the space 7,X does not depend on the choice of
parameterization ¢. To do so, we will make use of an equivalent definition for the
tangent space 7,X.

Last time we showed that given p € X C RV, and k¥ = N — n, there exists a
neighborhood V' of p in RY and a C>® map f : V — R mapping f(p) = 0 such that
XNV = f710). Note that f~'(0) N C; = ¢ (where here ¢ is the empty set).

We motivate the second definition of the tangent space. Since p € f~1(0), the
point p ¢ Cy. So, the map df, : T,RY — TyR* is surjective. So, the kernel of df, in
T,RY is of dimension N — k = n.

Definition 6.11. An alternate definition for the tangent space of a manifold is
T,X = kerdf,. (6.35)
Claim. These two definitions for the tangent space T, X are equivalent.

Proof. Let ¢ : U — V N X be a parameterization of X at p with ¢(p) = ¢. The
function f : V — R* has the property that f~1(0) = X NV. So, fo¢ = 0. Applying
the chain rule,

(dfp) © (dgg) = d(0) = 0. (6.36)
So, Im d¢, = ker df,,. ]

We can now explain why the tangent space 7, X is independent of the chosen
parameterization. We have two definitions for the tangent space. The first does not
depend on the choice of ¢, and the second does not depend on choice of f. Therefore,
the tangent space depends on neither.

Lemma 6.12. Let W be an open subset of RY, and let g : W — R™ be a C* map.
Suppose that g(W) C X and that g(w) = p, where w € W. Then (dg)w C T,X.

Proof Hint: We leave the proof as an exercise. As above, we have a map f : V — RF
such that X NV = f71(0) and T,X = kerdf,. Let W; = g~ (V), and consider the
map fog:W; — RF. As before, fog=0,so df,odg, =0. O
Suppose that X C RY is an n-dimensional manifold and ¥ C R’ is an m-
dimensional manifold. Let f: X — Y be a C>* map, and let f(p) = q.. We want to
define a linear map
df, : T,X — T,Y. (6.37)
Let v be a neighbor hood of p in RY, and let g : V — R’ be a map such that ¢ = f
on V' N X. By definition T,X C T,R", so we have

dg, : T,RY — T,R¥. (6.38)
We define the map df,, to be the restriction of dg, to the tangent space 7, X.



Definition 6.13.
df, = dg,|T,X. (6.39)

There are two questions about this definition that should have us worried:
1. Is Im dg,(7,X) a subset of T,Y?
2. Does this definition depend on the choice of g?

We address these two questions here:

1. Is Im dg,(T,X) a subset of T,Y?

Let U be an open subset of RY, let ¢ = f(p), and let ¢ : U — X NV be a
parameterization of X at p. As before, let us think of ¢ as a map ¢ : U — RV
with ¢p(U) C X.

By definition, 7,X = Im (d¢),, where ¢(r) = p. So, given v € T, X, one can
always find w € T,R" with v = (d¢),w.

Now, is it true that (dg),(v) € T,Y? We have

(dg)pv = (dg)p(do)(w)

6.40
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and the map (g o ¢) is of the form go ¢ : U — Y, so
d(go ¢),(w) € T,Y. (6.41)

2. Does the definition depend on the choice of g?

Consider two such maps g1, g2 : V — Rf. The satisfy g1 = ¢go = f on X NV.
Then, with v, w as above,

(dg1)p(v) = d(g1 0 ¢)r(w) (6.42)
(dg2)p(v) = d(g2 0 ¢)r(w). (6.43)
Since g1 = g on X NV, we have
G1op=ga09=fog. (6.44)
Hence,
d(g1 0 ¢)r(w) = d(gz 0 §)r(w). (6.45)

As an exercise, show that the chain rule also generalizes to manifolds as follows:
Suppose that X, X5, X5 are manifolds with X; € RY and let f : X; — X, and
g: Xo — X3 be C* maps. Let f(p) =q and g(q) =r.

Show the following claim.



Claim.
d(go f)p = (dgy) o (df ). (6.46)

Proof Hint: Let Vi be a neighborhood of p in R™, and let V5 be a neighborhood of
g in RM. Let f: Vi, — Vi be an extension of f to Vi, and let § : Vo — R be an
extension of g to V5.

The chain rule for f, g follows from the chain rule for f, .



