Lecture 33

6.5 Differential Forms on Manifolds

Let U C R” be open. By definition, a k-form w on U is a function which assigns to
each point p € U an element w, € A*(T/R™).

We now define the notion of a k-form on a manifold. Let X C RY be an n-
dimensional manifold. Then, for p € X, the tangent space T,X C T,R".

Definition 6.14. A k-form w on X is a function on X which assigns to each point
p € X an element w, € A*((T,X)*).

Suppose that f: X — R is a C* map, and let f(p) = a. Then df, is of the form
df, : T,X — T,R =R. (6.47)

We can think of df, € (T,X)* = A'((T,X)*). So, we get a one-form df on X which
maps each p € X to df,.
Now, suppose

i is a k-form on X, and (6.48)
v is an (-form on X. (6.49)
For p € X, we have
1y € A*(T7X) and (6.50)
vy € N(T;X). (6.51)
Taking the wedge product,
pp Avp € AT X)), (6.52)

The wedge product p A v is the (k + ¢)-form mapping p € X to p, A 1.
Now we consider the pullback operation. Let X C RY and Y C R? be manifolds,
and let f: X — Y be a C>® map. Let p € X and a = f(p). We have the map

df, : T,X — T,Y. (6.53)
From this we get the pullback
(df,)" : AN(T7Y) — AM(TX). (6.54)
Let w be a k-form on Y. Then f*w is defined by

(ffw)p = (dfy) wq. (6.55)



Let f: X - Y and g : Y — Z be C* maps on manifolds X,Y, 7. Let w be a

k-form. Then
(9o f)w=f"(g'w), (6.56)
where go f : X — Z.

So far, the treatment of k-forms for manifolds has been basically the same as our
earlier treatment of k-forms. However, the treatment for manifolds becomes more
complicated when we study C* forms.

Let U be an open subset of R”, and let w be a k-form on U. We can write

w:ZaI(x)dxil/Mu/\dxik, I'=(i1,...,0). (6.57)

By definition, we say that w € Q*(U) if each A; € C*(U).

Let V be an open subset of R* and let f: U — V be a C*® map. Let w € QF(V).
Then f*w € QF(U). Now, we want to define what we mean by a C* form on a
manifold.

Let X C R™ be an n-dimensional manifold, and let p € X. There exists an open
set U in RY, a neighborhood V of p in RY, and a diffeomorphism ¢ : U — V N X.
The diffeomorphism ¢ is a parameterization of X at p.

We can think of ¢ in the following two ways:

1. as a map of U onto VN X, or
2. as a map of U onto V', whose image is contained in X.

The second way of thinking about ¢ is actually the map ¢x o ¢, where tx : X — RV is
the inclusion map. Note that tx : X — R is C*, because it extends to the identity
map [ : RV — RV,

We give two equivalent definitions for C*° k-forms. Let w be a k-form on X.

Definition 6.15. The k-form w is C* at p if there exists a k-form © € Q¥(V) such
that (0 = w.

Definition 6.16. The k-form w is C* at p if there exists a diffeomorphism ¢ : U —
V N U such that ¢*w € Q¥(U).

The first definition depends only on the choice of @, and the second definition
depends only on the choice of ¢. So, if the definitions are equivalent, then neither
definition depends on the choice of @ or the choice of ¢.

We show that these two definitions are indeed equivalent.

Claim. The above two definitions are equivalent.

Proof. First, we show that (def 6.15) = (def 6.16). Let w = (\@. Then ¢*w =
(tx0¢)*@. The map tog: U — V is C*°, and © € QF(v), so ¢*w = (1x0¢)*® € Q*(U).



Second, we show that (def 6.16) = (def 6.15). Let ¢ : U — V. NU be a
diffeomorphism. Then ¢! : V N X — U can be extended to ¢ : V — U, where v is
C*. On VN X, the map ¢ = 15©, where @ = ¢*(¢*w). It is easy to show that @ is
Ce™. O

Definition 6.17. The k-form w is C* if w is C* at p for every point p € X.
Notation. If w is C*°, then w € QF(X).

Theorem 6.18. If w € Q%(X), then there exists a neighborhood W of X in RN and
a k-form & € QF(W) such that %o = w.

Proof. Let p € X. There exists a neighborhood V,, of p in RY and a k-form w? €
QF(V,) such that tjw? =w on V,N X.
Let
we v (6.58)
peX

The collection of sets {V,, : p € X'} is an open cover of W. Let p;, i =1,2,3,..., be
a partition of unity subordinate to this cover. So, p; € C3°(W) and supp p; C V,, for
some p. Let

P V.
o= e (6.59)
0 elsewhere.
Notice that
U w; = Uy pit’w? (6.60)
= (Uxpi)w

Take

o= iw (6.61)

This sum makes sense since we used a partition of unity. From the sum, we can see
that @ € QF(W). Finally,

G = 5 e 662

]

Theorem 6.19. Let X C RN and Y C R’ be manifolds, and let f : X — Y be a C*®
map. If w € QF(X), then f*w € QF(Y).



Proof. Take an open set W in R? such that W D Y, and take @ € QF(W) such that
V5w =w. Take any p € X and ¢ : U — V a parameterization of X at p.
We show that the pullback ¢*(f*w) is in QF(U). We can write

¢"(f'w) = " [*(txw)
= (Lo fod)w,
where in the last step we used the chain rule.
The form @ € QF¥(W), where W is open in R’ so to fo¢ : U — W. The

theorem that we proved on Fuclidean spaces shows that the r.h.s of Equation 6.63 is

in QF(U). O

(6.63)

The student should check the following claim:
Claim. If u,v € QK(Y), then
fluhv)y=funfv (6.64)
The differential operation d is an important operator on k-forms on manifolds.
d: QF(X) — QFH(X). (6.65)

Let X C RY be a manifold, and let w € QF(X). There exists an open neighborhood
W of X in RY and a k-form @ € QF(W) such that 150 = w.

Definition 6.20. dw = (% dw.

Why is this definition well-defined? It seems to depend on the choice of @.
Take a parameterization ¢ : U — V N X of X at p. Then

¢ dw = (1x 0 ¢)"dw

=d(1x o ¢)*w
6.66
— 46" (152) (600
= do*w.
So,
¢ do = do*w. (6.67)

Take the inverse mapping ¢! : VN X — U and take the pullback (¢~!)* of each side
of Equation 6.67, to obtain
Udd = (¢~ 1) do*w. (6.68)

The r.h.s does not depend on @, so neither does the L.h.s.
To summarize this lecture, everything we did with k-forms on Euclidean space
applies to k-forms on manifolds.



