
Lecture 33


6.5 Differential Forms on Manifolds 

Let U ⊆ Rn be open. By definition, a k­form ω on U is a function which assigns to 
each point p ∈ U an element ωp ∈ Λk(T ∗Rn).p 

We now define the notion of a k­form on a manifold. Let X ⊆ RN be an n ­
dimensional manifold. Then, for p ∈ X , the tangent space TpX ⊆ TpRN . 

Definition 6.14. A k­form ω on X is a function on X which assigns to each point 
p ∈ X an element ωp ∈ Λk((TpX )

∗). 

Suppose that f : X → R is a C∞ map, and let f (p) = a . Then dfp is of the form 

dfp : TpX TaR ∼ R. (6.47) = → 

We can think of dfp ∈ (TpX )∗ = Λ1((TpX )
∗). So, we get a one­form df on X which 

maps each p ∈ X to dfp. 
Now, suppose 

µ is a k­form on X , and (6.48) 

ν is an �­form on X . (6.49) 

For p ∈ X , we have 

µp ∈ Λk(T ∗X ) and (6.50) p 

νp ∈ Λ�(T ∗X ). (6.51) p 

Taking the wedge product, 
µp ∧ νp ∈ Λk+�(T ∗X ). (6.52) p 

The wedge product µ ∧ ν is the (k + �)­form mapping p ∈ X to µp ∧ νp. 
Now we consider the pullback operation. Let X ⊆ RN and Y ⊆ R� be manifolds, 

and let f : X → Y be a C∞ map. Let p ∈ X and a = f (p). We have the map 

dfp : TpX TaY. (6.53) → 

From this we get the pullback 

(dfp)
∗ : Λk(Ta 

∗Y ) → Λk(T ∗X ). (6.54) p 

Let ω be a k­form on Y . Then f ∗ω is defined by 

(f ∗ω)p = (dfp)
∗ωq. (6.55) 
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Let f : X → Y and g : Y → Z be C∞ maps on manifolds X, Y, Z. Let ω be a 
k­form. Then 

(g ◦ f)∗ω = f ∗(g∗ω), (6.56) 

where g ◦ f : X Z.→
So far, the treatment of k­forms for manifolds has been basically the same as our 

earlier treatment of k­forms. However, the treatment for manifolds becomes more 
complicated when we study C∞ forms. 

Let U be an open subset of Rn, and let ω be a k­form on U . We can write 

ω = aI(x)dxi1 ∧ · · · ∧ dxik , I = (i1, . . . , ik). (6.57) 

By definition, we say that ω ∈ Ωk(U) if each AI ∈ C∞(U). 
Let V be an open subset of Rk, and let f : U → V be a C∞ map. Let ω ∈ Ωk(V ). 

Then f ∗ω ∈ Ωk(U). Now, we want to define what we mean by a C∞ form on a 
manifold. 

Let X ⊆ Rn be an n­dimensional manifold, and let p ∈ X. There exists an open 
set U in RN , a neighborhood V of p in RN , and a diffeomorphism φ : U → V ∩ X. 
The diffeomorphism φ is a parameterization of X at p. 

We can think of φ in the following two ways: 

1. as a map of U onto V ∩X, or 

2. as a map of U onto V , whose image is contained in X. 

The second way of thinking about φ is actually the map ιX ◦φ, where ιX : X RN is→
the inclusion map. Note that ιX : X → RN is C∞, because it extends to the identity 
map I : RN RN .→

We give two equivalent definitions for C∞ k­forms. Let ω be a k­form on X. 

Definition 6.15. The k­form ω is C∞ at p if there exists a k­form ω̃ ∈ Ωk(V ) such 
˜that ι∗ w = ω.X 

Definition 6.16. The k­form ω is C∞ at p if there exists a diffeomorphism φ : U 
V ∩ U such that φ∗ω ∈ Ωk(U). 

→ 

The first definition depends only on the choice of ω̃, and the second definition 
depends only on the choice of φ. So, if the definitions are equivalent, then neither 
definition depends on the choice of ω̃ or the choice of φ.


We show that these two definitions are indeed equivalent.


Claim. The above two definitions are equivalent. 

˜Proof. First, we show that (def 6.15) = ⇒ (def 6.16). Let ω = ι∗ ω. Then φ∗ω = X 

ω. The map ι φ : U → V is C∞, and ˜ ω ∈ Ωk(U).(ιX ◦φ)∗ ̃ ◦ ω ∈ Ωk(v), so φ∗ω = (ιX ◦φ)∗ ̃
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Second, we show that (def 6.16) = ⇒ (def 6.15). Let φ : U → V ∩ U be a 
diffeomorphism. Then φ−1 : V ∩X U can be extended to ψ : V U , where ψ is→ →
C∞. On V ∩X, the map φ = ι∗ ω, where ˜ ω is˜ ω = ψ∗(φ∗ω). It is easy to show that ˜X 

C∞. 

Definition 6.17. The k­form ω is C∞ if ω is C∞ at p for every point p ∈ X. 

Notation. If ω is C∞, then ω ∈ Ωk(X). 

Theorem 6.18. If ω ∈ Ωk(X), then there exists a neighborhood W of X in RN and 
a k­form ˜ X ˜ω ∈ Ωk(W ) such that ι∗ ω = w. 

Proof. Let p ∈ X. There exists a neighborhood Vp of p in RN and a k­form ωp ∈
Ωk(Vp) such that ι∗ ωp = ω on Vp ∩X.X

Let 

 
Vp. (6.58) W ⊆ 

p∈X 

The collection of sets {Vp : p ∈ X} is an open cover of W . Let ρ1, i = 1, 2, 3, . . . , be 
a partition of unity subordinate to this cover. So, ρi ∈ C0

∞(W ) and supp ρi ⊂ Vp for 
some p. Let 

ρiω
p on Vp,

ω̃i = (6.59) 
0 elsewhere. 

Notice that 

ι∗ ˜ = ι∗ ρiι
∗ ωp Xωi X X

= (ι∗ ρi)ω. 
(6.60) 

X

Take 
∞

ω = ωi. (6.61) ˜ ˜
i=1 

This sum makes sense since we used a partition of unity. From the sum, we can see 
that w̃ ∈ Ωk(W ). Finally, 

ι∗ w = (ι∗ ρi)ωX ˜ X 
(6.62) 

= ω. 

Theorem 6.19. Let X ⊆ RN and Y ⊆ R� be manifolds, and let f : X → Y be a C∞ 

map. If ω ∈ Ωk(X), then f ∗ω ∈ Ωk(Y ). 
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Proof. Take an open set W in R� such that W ⊃ Y , and take ω̃ ∈ Ωk(W ) such that 
˜ι∗ ω = ω. Take any p ∈ X and φ : U → V a parameterization of X at p. 
We show that the pullback φ∗(f∗ω) is in Ωk(U). We can write 

φ∗(f ∗ω) = φ∗f ∗(ι∗ w)˜X (6.63) 
= (ι f φ)∗ ω̃, ◦ ◦ 

where in the last step we used the chain rule. 
˜The form ω ∈ Ωk(W ), where W is open in R�, so ι f φ : U W . The◦ ◦ →

theorem that we proved on Euclidean spaces shows that the r.h.s of Equation 6.63 is 
in Ωk(U). 

The student should check the following claim: 

Claim. If µ, ν ∈ Ωk(Y ), then 

f ∗(µ ∧ ν) = f ∗µ ∧ f ∗ν. (6.64) 

The differential operation d is an important operator on k­forms on manifolds. 

d : Ωk(X) → Ωk+1(X). (6.65) 

Let X ⊆ RN be a manifold, and let ω ∈ Ωk(X). There exists an open neighborhood 
W of X in RN and a k­form ˜ X ˜ω ∈ Ωk(W ) such that ι∗ ω = ω. 

Definition 6.20. dω = ι∗ dω̃.X

Why is this definition well­defined? It seems to depend on the choice of ω̃. 
Take a parameterization φ : U → V ∩ X of X at p. Then 

φ∗ι∗ d˜ ωω = (ιX ◦ φ)∗d˜X

= d(ιX ◦ φ)∗ω 
(6.66) 

= dφ∗(ι∗ ω)X ˜

= dφ∗ω. 

So, 
φ∗ι∗ dω̃ = dφ∗ω. (6.67) X

Take the inverse mapping φ−1 : V ∩ X U and take the pullback (φ−1)∗ of each side →
of Equation 6.67, to obtain 

Xd˜ι∗ ω = (φ−1)∗dφ∗ω. (6.68) 

The r.h.s does not depend on ω̃, so neither does the l.h.s. 
To summarize this lecture, everything we did with k­forms on Euclidean space 

applies to k­forms on manifolds. 
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