Lecture 34

6.6 Orientation of Manifolds

Let X be an n-dimensional manifold in RY. Assume that X is a closed subset of RY.
Let f: X — R be a C*® map.

Definition 6.21. We remind you that the support of f is defined to be

supp f ={z € X : f(x) # 0}. (6.69)

Since X is closed, we don’t have to worry about whether we are taking the closure
in X or in R"™.

Note that
f €CF(X) < supp f is compact. (6.70)
Let w € Q%(X). Then
supp w = {p € X : w, # 0}. (6.71)
We use the notation
w € QF(X) <= supp w is compact. (6.72)

We will be using partitions of unity, so we remind you of the definition:

Definition 6.22. A collection of functions {p; € Cg°(X) :i = 1,2,3,...} is a partition
of unity if

2. For every compact set A C X, there exists N > 0 such that supp p; VA = ¢
for all i > N,

Suppose the collection of sets U = {U,, : a € I} is a covering of X by open subsets
U, of X.

Definition 6.23. The partition of unity p;, ¢ = 1,2,3, ..., is subordinate to U if for
every 1, there exists a € I such that supp p; C U,.

Claim. Given a collection of sets U = {U, : a € I}, there exists a partition of unity
subordinate to U.



Proof. For each a € I, let (ja be~an open set in RY such that U, = Ua NnX. We
define the collection of sets U = {U, : a € I'}. Let

U=|]JUa. (6.73)

From our study of Euclidean space, we know that there exists a partition of unity
pi €C(U), i=1,2,3,..., subordinate to U. Let tx : X — U be the inclusion map.
Then

pi = piotx = Uxpi, (6.74)
which you should check. O

We review orientations in Euclidean space before generalizing to manifolds. For a
more comprehensive review, read section 7 of the Multi-linear Algebra notes.

Suppose L is a one-dimensional vector space and that v € L—{0}. The set L—{0}
has two components:

{A:A>0} and {lv:\<0}. (6.75)
Definition 6.24. An orientation of L is a choice of one of these components.

Notation. We call the preferred component I, (the positive component). We call
the other component L_ (the negative component).

We define a vector v to be positively oriented if v € L, .
Now, let V' be an n-dimensional vector space.

Definition 6.25. An orientation of V' is an orientation of the one-dimensional vector
space A"(V*). That is, an orientation of V' is a choice of A"(V*),.

Suppose that Vi, V5 are oriented n-dimensional vector spaces, and let A : Vi — V4
be a bijective linear map.

Definition 6.26. The map A is orientation preserving if
weAN' (V) = A'we A" (V). (6.76)

Suppose that V3 is also an oriented n-dimensional vector space, and let B : Vo — V3
be a bijective linear map. If A and B are orientation preserving, then BA is also
orientation preserving.

Finally, let us generalize the notion of orientation to orientations of manifolds.
Let X C RY be an n-dimensional manifold.

Definition 6.27. An orientation of X is a function on X which assigns to each point
p € X an orientation of T,,X.



We give two examples of orientations of a manifold:

Example 1: Let w € A"(X), and suppose that w is nowhere vanishing. Orient X
by assigning to p € X the orientation of T, X for which w, € A™(7T;X),.

Example 2: Take X = U, an open subset of R”, and let

w=dr; N\ Ndx,. (6.77)

Define an orientation as in the first example. This orientation is called the standard
orientation of U.

Definition 6.28. An orientation of X is a C* orientation if for every point p € X,
there exists a neighborhood U of p in X and an n-form w € 2"(U) such that for all
points ¢ € U, w, € A™(T;X) .

From now on, we will only consider C*° orientations.

Theorem 6.29. If X is oriented, then there exists w € Q"(X) such that for all
peEX,weA(TiX),.

Proof. For every point p € X, there exists a neighborhood U, of p and an n- form
w®) € Q"(U,) such that for all ¢ € U, ('), € A"(T35X).

Take p;, i = 1,2,..., a partition of unity subordinate to Y = {U, : p € X}. For
every i, there exists a point p such that p; € Cg°(U,). Let

w() U,
D (6.78)
0 on the X —U,.

Since the p;’s are compactly supported, w; is a C* map. Let

w= Zwi. (6.79)

One can check that w is positively oriented at every point. O]

Definition 6.30. An n-form w € Q"(X) with the property hypothesized in the above
theorem is called a volume form.

Remark. If wi,wy are volume forms, then we can write wy = fw;, for some f €
C>®(X) (where f # 0 everywhere). In general, f(p) > 0 because (wi),, (w2), €
A™M(T;X ). So, if wy,wy are volume forms, then wy = fw, for some f € C*(X) such
that f > 0.

Remark. Problem #6 on the homework asks you to show that if X is orientable and
connected, then there are exactly two ways to orient it. This is easily proved using
the above Remark.



Suppose that X C R" is a one-dimensional manifold (a “curve”). Then 7,X is
one-dimensional. We can find vectors v, —v € T,,X such that ||v|| = 1. An orientation
of X is just a choice of v or —v.

Now, suppose that X is an (n — 1)-dimensional manifold in R™. Define

N X ={veT,R":v L wforalweT,X}. (6.80)

Then dim N, X = 1, so you can find v, —v € N, X such that ||[v|| = 1. By Exercise #5
in section 4 of the Multi-linear Algebra Notes, an orientation of 7, X is just a choice
of v or —uv.

Suppose X, Xy are oriented n-dimensional manifolds, and let f : X; — X5 be a
diffeomorphism.

Definition 6.31. The map f is orientation preserving if for every p € X,
dfp : Tle — TqXQ (681)
is orientation preserving, where ¢ = f(p).

Remark. Let wy be a volume form on X,. Then f is orientation preserving if and
only if f*ws = wq is a volume form on Xj.

We look at an example of what it means for a map to be orientation preserving.
Let U,V be open sets on R™ with the standard orientation. Let f : U — V be a
diffeomorphism. So, by definition, the form

dry A -+ Adxy, (6.82)

is a volume form of V. The form

Ofi
f*dxl/\~~/\dxn:det[ f}dxl/w'-/\dxn (6.83)
an
is a volume form of U if and only if
Ofi
det [ J } > 0, (6.84)
8:15]-

that is, if and only if f is orientation preserving in our old sense.
Now that we have studied orientations of manifolds, we have all of the ingredients
we need to study integration theory for manifolds.



