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Lecture 35

Before moving on to integration, we make a few more remarks about orientations. 
Let X, Y be oriented manifolds. A diffeomorphism f : X Y is orientation →

preserving if for every p ∈ X, the map 

dfp : TpX TqY (6.85) →

is orientation preserving, where q = f(p). 
Let V be open in X, let U be open in Rn, and let φ : U → V be a parameterization. 

Definition 6.32. The map φ is an oriented parameterization if it is orientation pre­
serving. 

Suppose φ is orientation reversing. Let A : Rn Rn be the linear map defined by →

A(x1, . . . , xn) = (−x1, x2, . . . , xn). (6.86) 

The map A is orientation reversing. Let U � = A−1(U), and define φ� = φ A : U � V .◦ →
Both φ and A are orientation reversing, so φ� is orientation preserving. 

Thus, for every point p ∈ X, there exists an oriented parameterization of X at p. 

6.7 Integration on Manifolds 

Our goal for today is to take any ω ∈ Ωn
c (X) and define � 
ω. (6.87) 

X 

First, we consider a special case:

Let φ : U V be an oriented parameterization. Let U be open in Rn, and let V
→

be open in X. Take any ω ∈ Ωc
n(V ). Then 

ω = φ∗ω, (6.88) 
V U 

where φ∗ω = n, where f ∈ C0
∞(U) andf(x)dx1 ∧ · · · ∧ dx

φ∗ω = f. (6.89) 
U U 

Claim. The above definition for ω does not depend on the choice of oriented pa­
rameterization φ. 
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Proof. Let φi : Ui → V, i = 1, 2, be oriented parameterizations. Let ω ∈ Ωn
c (V1 ∩ V2). 

Define 

U1,2 = φ−1(V1 ∩ V2),	 (6.90) 1 

U2,1 = φ−1(V1 ∩ V2), (6.91) 2 

which are open sets in Rn . 
Both φ1 and φ2 are diffeomorphisms, and we have the diagram 

V1 ∩ V2 

φ1 

�⏐⏐ 

V1 ∩ V2 

φ2 

�⏐⏐ (6.92) 

f 
U2,1.U1,2 −−−→ 

Therefore, f = φ−1 ◦ φ1 is a diffeomorphism, and φ1 = φ2 ◦ f . Integrating, 2 

φ∗ω = φ∗ω1 1
U1 U1,2 

= (φ2 ◦ f)∗ω	 (6.93) 
U1,2 

= f ∗(φ∗ω).2
U1,2 

Note that f is orientation preserving, because φ1 and φ2 are orientation preserving. 
Using the change of variables formula, 

2ω = φ∗f ∗φ∗ 
2ω 

U1,2 U2,1 (6.94) 

= φ∗ω. 2
U2 

(V V ),∩1 2c � 
So, for all ω ∈ Ωn 

ω = φ∗ 
2ω = ω.	 (6.95) 1ω = φ∗ 

V1 U1 U2 V2 

Above, we showed above how to take integrals over open sets, and now we gener­
alize. 

To define the integral, we need the following two inputs: 

� 1.	 a set of oriented parameterizations φi : Ui → Vi, i = 1, 2, . . . , such that X = 
Vi, 
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2. a partition of unity ρi ∈ C0
∞(Vi) subordinate to the cover {Vi}. 

Definition 6.33. Let ω ∈ Ωn
c (X). We define the integral � ∞ � 

ω = ρiω. (6.96) 
X i=1 Vi 

One can check various standard properties of integrals, such as linearity: 

ω1 + ω2 = ω1 + ω2. (6.97) 
X X X 

We now show that this definition is independent of the choice of the two inputs 
(the parameterizations and the partition of unity). 

Consider two different inputs: � 
1. oriented parameterizations φj

� : Uj
� → Vj

�, j = 1, 2, . . . , such that X = Vj
�, 

2. a partition of unity ρ�i ∈ C0
∞(Vj

�) subordinate to the cover {V � .j }

Then, 

∞

ρiω = ρ�jω 
Vi Vi j=1 

∞ � 
= ρiρ

�
jω (6.98) 

j=1 Vi 

∞ � 
= ρiρ

�
jω. 

j=1 Vi∩Vj
�

Summing over i, � ∞ � 
ρiω = ρiρ

�
jω 

i Vi i,j=1 Vi∩Vj
��� (6.99) 

= ρj
�ω, 

j Vj
�

where the first term equals the last term by symmetry. Therefore, the integral ω is 
independent of the choices of these two inputs. 

Let X ⊆ RN be an oriented connected n­dimensional manifold. 

Theorem 6.34. For any ω ∈ Ωn
c (X), the following are equivalent: 

1. ω = 0,
X 
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c 2. ω ∈ dΩn−1(X). 

Proof. This will be a five step proof: 
Step 1: The following lemma is called the Connectivity Lemma. 

Lemma 6.35. Given p, q ∈ X, there exists open sets Wj, j = 0, . . . , N +1, such that 
each Wj is diffeomorphic to an open set in Rn, and such that p ∈ W0, q ∈ WN+1, and 
Wi ∩Wi+1 = φ. 

Proof Idea: Fix p. The points q for which this is true form an open set. The points 
q for which this isn’t true also form an open set. Since X is connected, only one of 
these sets is in X. 

Step 2: Let ω1, ω2 ∈ Ωn
c (X). We say that ω1 ∼ ω2 if 

ω1 = ω2. (6.100) 
X X 

We can restate the theorem as 

ω1 ∼ ω2 ⇐⇒ ω1 − ω2 ∈ dΩn−1(X). (6.101) c 

Step 3: It suffices to prove the statement (6.101) for ω1 ∈ Ωn
c (V ) and ω2 ∈ Ωc

n(V �), 
where V, V � are diffeomorphic to open sets in Rn . 

Step 4: We use a partition of unity 

Lemma 6.36. The theorem is true if V = V �. 

Proof. Let φ : U → V be an orientation preserving parameterization. If ω1 ∼ ω2, 
then � � 

φ∗ω1 = φ∗ω2, (6.102) 

which is the same as saying that 

φ∗ω1 − φ∗ω2 ∈ dΩn−1(U), (6.103) c 

which is the same as saying that 

ω1 − ω2 ∈ dΩn−1(V ). (6.104) c 

Step 5: In general, by the Connectivity Lemma, there exists sets Wi, i = 0, . . . , N+ 
1, such that each Wi is diffeomorphic to an open set in Rn . We can choose W0 = V 
and WN+1 = V � and Wi ∩Wi+1 = φ (where φ here is the empty set). 

We can choose µi ∈ Ωn
c (Wi ∩Wi+1) such that 

c = ω1 = µ0 = · · · = µN+1 = ω2. (6.105) 
V V � 
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So, 
(6.106) ω1 ∼ µ0 ∼ · · · ∼ µN ∼ ω2. 

We know that µ0−ω1 ∈ dΩn−1 and ω2−µN+1 ∈ dΩn−1 Also, each difference ωi−ωi+1 ∈c C 

dΩn−1 . Therefore, ω1 − ω2 ∈ dΩn−1 .c c 

6.8 Degree on Manifolds 

Suppose that X1, X2 are oriented n­dimensional manifolds, and let f : X1 → X2 be 
a proper map (that is, for every compact set A ⊆ X, the set pre­image f−1(A) is 
compact). It follows that if ω ∈ Ωc

k(X2), then f ∗ω ∈ Ωc
k(X1). 

Theorem 6.37. If X1, X2 are connected and f : X1 → X2
� is a proper C∞ map, then 

there exists a topological invariant of f (called the degree of f) written deg(f) such 
that for every ω ∈ Ωn

c (X2), 

f ∗ω = deg(f) ω. (6.107) 
X1 X2 

Proof. The proof is pretty much verbatim of the proof in Euclidean space. 

Let us look at a special case. Let φ1 : U → V be an oriented parameterization, 
and let V1 be open in X1. Let f : X1 → X2 be an oriented diffeomorphism. Define 
φ2 = f φ1, which is of the form φ2 : U → V2, where V2 = f(V1). Notice that φ2 is◦
an oriented parameterization of V2. 

Take ω ∈ Ωn
c (V2) and compute the integral 

f ∗ω = φ∗f ∗ω1
V1 �U 

= (f φ1)
∗ω (6.108) ◦�U 

= φ∗ω. 2
U 

The n­form ω is compactly supported on V2, so 

f ∗ω = φ∗ω2
V1 �U (6.109) 

= ω. 
X2 

On the other hand, 

f ∗ω = f ∗ω. (6.110) 
X1 V1 
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Combining these results, 

f ∗ω = ω. (6.111) 
X1 X2 

Therefore, 
deg(f) = 1. (6.112) 

So, we have proved the following theorem, which is the Change of Variables the­
orem for manifolds: 

Theorem 6.38. Let X1, X2 be connected oriented n­dimensional manifolds, and let 
f : X1 → X2 be an orientation preserving diffeomorphism. Then, for all ω ∈ Ωc

n(X2), 

f ∗ω = ω. (6.113) 
X1 X2 
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