Lecture 35

Before moving on to integration, we make a few more remarks about orientations.
Let X,Y be oriented manifolds. A diffeomorphism f : X — Y is orientation
preserving if for every p € X, the map

df, : T,X — T,Y (6.85)

is orientation preserving, where ¢ = f(p).
Let V be open in X, let U be open in R", and let ¢ : U — V be a parameterization.

Definition 6.32. The map ¢ is an oriented parameterization if it is orientation pre-
serving.

Suppose ¢ is orientation reversing. Let A : R™ — R"™ be the linear map defined by
Az, .. ) = (—21, 29, ..., Tp). (6.86)

The map A is orientation reversing. Let U’ = A~}(U), and define ¢/ = ¢go A : U’ — V.
Both ¢ and A are orientation reversing, so ¢’ is orientation preserving.
Thus, for every point p € X, there exists an oriented parameterization of X at p.

6.7 Integration on Manifolds
Our goal for today is to take any w € Q7(X) and define

/w. (6.87)
X

First, we consider a special case:

Let ¢ : U — V be an oriented parameterization. Let U be open in R", and let V'
be open in X. Take any w € Q?(V). Then

LWILW% (6.88)

where ¢*w = f(x)dxy A -+ A dx,, where f € C°(U) and

wa:éf (6.89)

Claim. The above definition for [w does not depend on the choice of oriented pa-
rameterization ¢@.



Proof. Let ¢; : U; — V, i = 1,2, be oriented parameterizations. Let w € Q(V; NV3).
Define

Uip = o1 (VinVa), (6.90)
Uza = 3 (Vi N TA), (6.91)

which are open sets in R".
Both ¢, and ¢, are diffeomorphisms, and we have the diagram

VinVy ——= Vinh
qﬂ @T (6.92)

U1,2 L U2,1-

Therefore, f = ¢y ' o ¢ is a diffeomorphism, and ¢; = ¢, o f. Integrating,
Pw= [ ¢w
Uy Ui,2

_ / (0 f)'w (6.93)
Ui,2

= [ [(¢w).

Ui,

Note that f is orientation preserving, because ¢; and ¢ are orientation preserving.
Using the change of variables formula,

[T = P
Ui Uz,1

(6.94)

= Paw.
Uz

So, for all w € Q2 (Vi N'V3),

/ w= [ ¢jw= | ¢sw :/ w. (6.95)
1% Uy Ua Va
[

Above, we showed above how to take integrals over open sets, and now we gener-
alize.
To define the integral, we need the following two inputs:

1. a set of oriented parameterizations ¢; : U; — V;, i = 1,2,..., such that X =

UV,



2. a partition of unity p; € C3°(V;) subordinate to the cover {V;}.

Definition 6.33. Let w € Q7(X). We define the integral

/X wzg /V P, (6.96)

One can check various standard properties of integrals, such as linearity:

/w1+w2:/w1+/w2. (697)
X X X

We now show that this definition is independent of the choice of the two inputs
(the parameterizations and the partition of unity).
Consider two different inputs:

1. oriented parameterizations ¢} : U; — V/, j=1,2,..., such that X = J V],
2. a partition of unity p} € C5°(V}) subordinate to the cover {V}.
Then,

:Z / pipiw (6.98)
Vi

Summing over %,

ZZ: /V piw =3 /V - pire

pELT (6.99)

ZZ/,péwa
J J

where the first term equals the last term by symmetry. Therefore, the integral f w is
independent of the choices of these two inputs.
Let X C RY be an oriented connected n-dimensional manifold.

Theorem 6.34. For any w € Q2 (X), the following are equivalent:

1. qu}:O,



2. we dQHX).

Proof. This will be a five step proof:
Step 1: The following lemma is called the Connectivity Lemma.

Lemma 6.35. Given p,q € X, there exists open sets Wj, 7 =0,..., N+1, such that
each W; is diffeomorphic to an open set in R", and such thatp € Wy, ¢ € W41, and
WinN Wi # ¢.

Proof Idea: Fix p. The points ¢ for which this is true form an open set. The points
q for which this isn’t true also form an open set. Since X is connected, only one of
these sets is in X. O

Step 2: Let wy,wy € QF(X). We say that wy ~ wy if

/XMZ/XWQ' (6.100)

W1~ Wy = w) —wy € dATHX). (6.101)

We can restate the theorem as

Step 3: It suffices to prove the statement (6.101) for w; € Q2(V) and wy € Q2(V'),
where V, V' are diffeomorphic to open sets in R".
Step 4: We use a partition of unity

Lemma 6.36. The theorem is true if V =1V".

Proof. Let ¢ : U — V be an orientation preserving parameterization. If w; ~ wy,

then
/ Pwy = / P wa, (6.102)

which is the same as saying that
P*wy — ¢*wy € dQH(U), (6.103)

which is the same as saying that
Wy — wy € dAHV). (6.104)
O

Step 5: In general, by the Connectivity Lemma, there exists sets W;, 7 =0,..., N+
1, such that each W; is diffeomorphic to an open set in R™. We can choose Wy =V
and Wy, =V and W; N W;,1 # ¢ (where ¢ here is the empty set).

We can choose p; € QF(W; N Wi4q) such that

C:/lezf“oz"':/“N+1:/,”2' (6.105)



So,
Wy ~ g ~ -~ UN Y Wa. (6106)

We know that pg—w; € dQ" ! and wy—pny1 € dQZfl Also, each difference w; —w; 1 €
dQn—1. Therefore, w; — wy € dQ7™1. O

6.8 Degree on Manifolds

Suppose that X, Xy are oriented n-dimensional manifolds, and let f : X; — X5 be
a proper map (that is, for every compact set A C X, the set pre-image f~1(A) is
compact). It follows that if w € QF(X5), then f*w € QF(X,).

Theorem 6.37. If Xy, Xy are connected and f : X1 — X, is a proper C> map, then
there exists a topological invariant of f (called the degree of f) written deg(f) such
that for every w € QF(X3),

ffw= deg(f)/ w. (6.107)
X1 Xo
Proof. The proof is pretty much verbatim of the proof in Euclidean space. m

Let us look at a special case. Let ¢; : U — V be an oriented parameterization,
and let V7 be open in X;. Let f : X; — X5 be an oriented diffeomorphism. Define
¢o = [ o ¢1, which is of the form ¢, : U — V3, where Vo = f(V;). Notice that ¢ is
an oriented parameterization of V5.

Take w € Q2 (V,) and compute the integral

mfw=Lﬂﬁw
= /(fo¢1)*w (6.108)

U
L@u

The n-form w is compactly supported on V5, so

lAﬁwzé@w
:/XQW'

ffw= [ flw. (6.110)
X1 141

(6.109)

On the other hand,



Combining these results,
/ ffw= / w. (6.111)
X X

deg(f) = 1. (6.112)

Therefore,

So, we have proved the following theorem, which is the Change of Variables the-
orem for manifolds:

Theorem 6.38. Let X1, Xy be connected oriented n-dimensional manifolds, and let
f: X1 — Xy be an orientation preserving diffeomorphism. Then, for all w € Q7 (X5),

o = . 6.113
Re /Xf’ (6.113)



