Lecture 35

Before moving on to integration, we make a few more remarks about orientations. Let X, Y be oriented manifolds. A diffeomorphism $f: X \to Y$ is orientation preserving if for every $p \in X$, the map

$$df_p: T_p X \to T_q Y \tag{6.85}$$

is orientation preserving, where q = f(p).

Let V be open in X, let U be open in \mathbb{R}^n , and let $\phi: U \to V$ be a parameterization.

Definition 6.32. The map ϕ is an *oriented parameterization* if it is orientation preserving.

Suppose ϕ is orientation reversing. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be the linear map defined by

$$A(x_1, \dots, x_n) = (-x_1, x_2, \dots, x_n). \tag{6.86}$$

The map A is orientation reversing. Let $U' = A^{-1}(U)$, and define $\phi' = \phi \circ A : U' \to V$. Both ϕ and A are orientation reversing, so ϕ' is orientation preserving.

Thus, for every point $p \in X$, there exists an oriented parameterization of X at p.

6.7 Integration on Manifolds

Our goal for today is to take any $\omega \in \Omega_c^n(X)$ and define

$$\int_{X} \omega. \tag{6.87}$$

First, we consider a special case:

Let $\phi: U \to V$ be an oriented parameterization. Let U be open in \mathbb{R}^n , and let V be open in X. Take any $\omega \in \Omega^n_c(V)$. Then

$$\int_{V} \omega = \int_{U} \phi^* \omega, \tag{6.88}$$

where $\phi^*\omega = f(x)dx_1 \wedge \cdots \wedge dx_n$, where $f \in \mathcal{C}_0^{\infty}(U)$ and

$$\int_{U} \phi^* \omega = \int_{U} f. \tag{6.89}$$

Claim. The above definition for $\int \omega$ does not depend on the choice of oriented parameterization ϕ .

Proof. Let $\phi_i: U_i \to V, \ i=1,2$, be oriented parameterizations. Let $\omega \in \Omega^n_c(V_1 \cap V_2)$. Define

$$U_{1,2} = \phi_1^{-1}(V_1 \cap V_2), \tag{6.90}$$

$$U_{2,1} = \phi_2^{-1}(V_1 \cap V_2), \tag{6.91}$$

which are open sets in \mathbb{R}^n .

Both ϕ_1 and ϕ_2 are diffeomorphisms, and we have the diagram

$$V_{1} \cap V_{2} = V_{1} \cap V_{2}$$

$$\downarrow \phi_{1} \qquad \qquad \downarrow \phi_{2} \qquad \qquad \downarrow \phi_{2} \qquad \qquad \downarrow \phi_{1,2} \qquad \qquad \downarrow \phi_{2,1}. \qquad \qquad \downarrow \phi_{1,2} \qquad \qquad \downarrow \phi_{2,1}. \qquad \qquad \downarrow \phi_{1,2} \qquad \qquad \downarrow \phi_{2,1}.$$

$$U_{1,2} = U_{1,2} = U_{2,1} \qquad \qquad \downarrow \phi_{2,1}. \qquad \downarrow \phi_{2,1}. \qquad \downarrow \phi_{2,1}. \qquad \downarrow \phi_{2,1}. \qquad \qquad \downarrow \phi_{$$

Therefore, $f = \phi_2^{-1} \circ \phi_1$ is a diffeomorphism, and $\phi_1 = \phi_2 \circ f$. Integrating,

$$\int_{U_1} \phi_1^* \omega = \int_{U_{1,2}} \phi_1^* \omega
= \int_{U_{1,2}} (\phi_2 \circ f)^* \omega
= \int_{U_{1,2}} f^* (\phi_2^* \omega).$$
(6.93)

Note that f is orientation preserving, because ϕ_1 and ϕ_2 are orientation preserving. Using the change of variables formula,

$$\int_{U_{1,2}} f^* \phi_2^* \omega = \int_{U_{2,1}} \phi_2^* \omega
= \int_{U_2} \phi_2^* \omega.$$
(6.94)

So, for all $\omega \in \Omega_c^n(V_1 \cap V_2)$,

$$\int_{V_1} \omega = \int_{U_1} \phi_1^* \omega = \int_{U_2} \phi_2^* \omega = \int_{V_2} \omega.$$
 (6.95)

Above, we showed above how to take integrals over open sets, and now we generalize.

To define the integral, we need the following two inputs:

1. a set of oriented parameterizations $\phi_i: U_i \to V_i, i = 1, 2, \ldots$, such that $X = \bigcup V_i$,

2. a partition of unity $\rho_i \in \mathcal{C}_0^{\infty}(V_i)$ subordinate to the cover $\{V_i\}$.

Definition 6.33. Let $\omega \in \Omega_c^n(X)$. We define the integral

$$\int_{X} \omega = \sum_{i=1}^{\infty} \int_{V_i} \rho_i \omega. \tag{6.96}$$

One can check various standard properties of integrals, such as linearity:

$$\int_{X} \omega_1 + \omega_2 = \int_{X} \omega_1 + \int_{X} \omega_2. \tag{6.97}$$

We now show that this definition is independent of the choice of the two inputs (the parameterizations and the partition of unity).

Consider two different inputs:

- 1. oriented parameterizations $\phi_j': U_j' \to V_j', \ j=1,2,\ldots$, such that $X=\bigcup V_j',$
- 2. a partition of unity $\rho'_i \in \mathcal{C}_0^{\infty}(V'_j)$ subordinate to the cover $\{V'_j\}$.

Then,

$$\int_{V_i} \rho_i \omega = \int_{V_i} \left(\sum_{j=1}^{\infty} \rho'_j \omega \right)
= \sum_{j=1}^{\infty} \int_{V_i} \rho_i \rho'_j \omega
= \sum_{j=1}^{\infty} \int_{V_i \cap V'_j} \rho_i \rho'_j \omega.$$
(6.98)

Summing over i,

$$\sum_{i} \int_{V_{i}} \rho_{i} \omega = \sum_{i,j=1}^{\infty} \int_{V_{i} \cap V'_{j}} \rho_{i} \rho'_{j} \omega$$

$$= \sum_{j} \int_{V'_{j}} \rho'_{j} \omega,$$
(6.99)

where the first term equals the last term by symmetry. Therefore, the integral $\int \omega$ is independent of the choices of these two inputs.

Let $X \subseteq \mathbb{R}^N$ be an oriented connected *n*-dimensional manifold.

Theorem 6.34. For any $\omega \in \Omega_c^n(X)$, the following are equivalent:

1.
$$\int_X \omega = 0$$
,

2. $\omega \in d\Omega_c^{n-1}(X)$.

Proof. This will be a five step proof:

Step 1: The following lemma is called the Connectivity Lemma.

Lemma 6.35. Given $p, q \in X$, there exists open sets W_j , j = 0, ..., N+1, such that each W_j is diffeomorphic to an open set in \mathbb{R}^n , and such that $p \in W_0$, $q \in W_{N+1}$, and $W_i \cap W_{i+1} \neq \phi$.

Proof Idea: Fix p. The points q for which this is true form an open set. The points q for which this isn't true also form an open set. Since X is connected, only one of these sets is in X.

Step 2: Let $\omega_1, \omega_2 \in \Omega_c^n(X)$. We say that $\omega_1 \sim \omega_2$ if

$$\int_{X} \omega_1 = \int_{X} \omega_2. \tag{6.100}$$

We can restate the theorem as

$$\omega_1 \sim \omega_2 \iff \omega_1 - \omega_2 \in d\Omega_c^{n-1}(X).$$
 (6.101)

Step 3: It suffices to prove the statement (6.101) for $\omega_1 \in \Omega_c^n(V)$ and $\omega_2 \in \Omega_c^n(V')$, where V, V' are diffeomorphic to open sets in \mathbb{R}^n .

Step 4: We use a partition of unity

Lemma 6.36. The theorem is true if V = V'.

Proof. Let $\phi: U \to V$ be an orientation preserving parameterization. If $\omega_1 \sim \omega_2$, then

$$\int \phi^* \omega_1 = \int \phi^* \omega_2, \tag{6.102}$$

which is the same as saying that

$$\phi^* \omega_1 - \phi^* \omega_2 \in d\Omega_c^{n-1}(U), \tag{6.103}$$

which is the same as saying that

$$\omega_1 - \omega_2 \in d\Omega_c^{n-1}(V). \tag{6.104}$$

Step 5: In general, by the Connectivity Lemma, there exists sets W_i , $i=0,\ldots,N+1$, such that each W_i is diffeomorphic to an open set in \mathbb{R}^n . We can choose $W_0=V$ and $W_{N+1}=V'$ and $W_i\cap W_{i+1}\neq \phi$ (where ϕ here is the empty set).

We can choose $\mu_i \in \Omega_c^n(W_i \cap W_{i+1})$ such that

$$c = \int_{V} \omega_1 = \int \mu_0 = \dots = \int \mu_{N+1} = \int_{V'} \omega_2.$$
 (6.105)

4

So,

$$\omega_1 \sim \mu_0 \sim \cdots \sim \mu_N \sim \omega_2.$$
 (6.106)

We know that $\mu_0 - \omega_1 \in d\Omega_c^{n-1}$ and $\omega_2 - \mu_{N+1} \in d\Omega_C^{n-1}$ Also, each difference $\omega_i - \omega_{i+1} \in d\Omega_c^{n-1}$. Therefore, $\omega_1 - \omega_2 \in d\Omega_c^{n-1}$.

6.8 Degree on Manifolds

Suppose that X_1, X_2 are oriented *n*-dimensional manifolds, and let $f: X_1 \to X_2$ be a proper map (that is, for every compact set $A \subseteq X$, the set pre-image $f^{-1}(A)$ is compact). It follows that if $\omega \in \Omega_c^k(X_2)$, then $f^*\omega \in \Omega_c^k(X_1)$.

Theorem 6.37. If X_1, X_2 are connected and $f: X_1 \to X_2'$ is a proper C^{∞} map, then there exists a topological invariant of f (called the degree of f) written $\deg(f)$ such that for every $\omega \in \Omega_c^n(X_2)$,

$$\int_{X_1} f^* \omega = \deg(f) \int_{X_2} \omega. \tag{6.107}$$

Proof. The proof is pretty much verbatim of the proof in Euclidean space. \Box

Let us look at a special case. Let $\phi_1: U \to V$ be an oriented parameterization, and let V_1 be open in X_1 . Let $f: X_1 \to X_2$ be an oriented diffeomorphism. Define $\phi_2 = f \circ \phi_1$, which is of the form $\phi_2: U \to V_2$, where $V_2 = f(V_1)$. Notice that ϕ_2 is an oriented parameterization of V_2 .

Take $\omega \in \Omega_c^n(V_2)$ and compute the integral

$$\int_{V_1} f^* \omega = \int_U \phi_1^* f^* \omega$$

$$= \int_U (f \circ \phi_1)^* \omega$$

$$= \int_U \phi_2^* \omega.$$
(6.108)

The *n*-form ω is compactly supported on V_2 , so

$$\int_{V_1} f^* \omega = \int_U \phi_2^* \omega$$

$$= \int_{X_2} \omega.$$
(6.109)

On the other hand,

$$\int_{X_1} f^* \omega = \int_{V_1} f^* \omega. \tag{6.110}$$

Combining these results,

$$\int_{X_1} f^* \omega = \int_{X_2} \omega. \tag{6.111}$$

Therefore,

$$\deg(f) = 1. \tag{6.112}$$

So, we have proved the following theorem, which is the Change of Variables theorem for manifolds:

Theorem 6.38. Let X_1, X_2 be connected oriented n-dimensional manifolds, and let $f: X_1 \to X_2$ be an orientation preserving diffeomorphism. Then, for all $\omega \in \Omega^n_c(X_2)$,

$$\int_{X_1} f^* \omega = \int_{X_2} \omega. \tag{6.113}$$