Lecture 36

The first problem on today’s homework will be to prove the inverse function
theorem for manifolds. Here we state the theorem and provide a sketch of the proof.
Let X,Y be n-dimensional manifolds, and let f : X — Y be a C>* map with

f(p) =p1.

Theorem 6.39. If df, : T,X — T,,Y is bijective, then f maps a neighborhood V of
p diffeomorphically onto a neighborhood Vi of p;.

Sketch of proof: Let ¢ : U — V be a parameterization of X at p, with ¢(q) = p.
Similarly, let ¢1 : Uy — V; be a parameterization of Y at py, with ¢1(q1) = p1-
Show that we can assume that f : V' — V; (Hint: if not, replace V by VN f=1(17)).
Show that we have a diagram

v L.
ﬂ mT (6.114)
U —— U,
which defines g,
g=¢; ofod, (6.115)
9(a) = ¢ (6.116)
So,
(dg), = (dgzﬁl);ll o df, o (dg),. (6.117)
Note that all three of the linear maps on the r.h.s. are bijective, so (dg), is a bijection.
Use the Inverse Function Theorem for open sets in R"™. ]

This ends our explanation of the first homework problem.
Last time we showed the following. Let X, Y be n-dimensional manifolds, and let
f: X — Y be a proper C> map. We can define a topological invariant deg(f) such

that for every w € Q2 (Y),
/ ffw = deg(f)/ w. (6.118)
b Y

There is a recipe for calculating the degree, which we state in the following theo-
rem. We lead into the theorem with the following lemma.
First, remember that we defined the set C of critical points of f by

peCy < df, : T,X — T,Y is not surjective, (6.119)

where ¢ = f(p).



Lemma 6.40. Suppose that ¢ € Y — f(Cy). Then f~'(q) is a finite set.

Proof. Take p € f~*(q). Since p ¢ Cy, the map df,, is bijective. The Inverse Function
Theorem tells us that f maps a neighborhood U, of p diffeomorphically onto an open
neighborhood of ¢. So, U, N f~!(q) = p.

Next, note that {U, : p € f~*(¢)} is an open covering of f~'(q). Since f is
proper, f(g) is compact, so there exists a finite subcover U,,, ..., U,,. Therefore,
fHa) = {p1,- ... pn} O

The following theorem gives a recipe for computing the degree.

Theorem 6.41.

N
deg(f) => oy, (6.120)
i=1
where
+1 if dfy, 1 T, X — T,Y is orientation preserving,
e {—1 if dfy, T, X — T,Y is orientation reversing, (6.121)
Proof. The proof is basically the same as the proof in Euclidean space. O

We say that ¢ € Y is a regular value of f if ¢ ¢ f(Cy). Do regular values exist?
We showed that in the Euclidean case, the set of non-regular values is of measure zero
(Sard’s Theorem). The following theorem is the analogous theorem for manifolds.

Theorem 6.42. If qo € Y and W is a neighborhood of qo in'Y, then W — f(Cy) is
non-empty. That is, every neighborhood of qy contains a regular value (this is known
as the Volume Theorem).

Proof. We reduce to Sard’s Theorem.

The set f~1(qo) is a compact set, so we can cover f~!(go) by open sets V; C X, i =
1,..., N, such that each V; is diffeomorphic to an open set in R".

Let W be a neighborhood of ¢ in Y. We can assume the following:

1. W is diffeomorphic to an open set in R",
2. f7Y(W) c UV, (which is Theorem 4.3 in the Supp. Notes),
3. f(Vi) C W (for, if not, we can replace V; with V; N f~*(1W)).

Let U and the sets U;, © = 1,..., N, be open sets in R". Let ¢ : U — W and the
maps ¢; : U; — V; be diffeomorphisms. We have the following diagram:

v, L w
¢Z~£T ¢>,gT (6.122)

UZL U7



which define the maps g;,
Gi=¢ 1o fod. (6.123)
By the chain rule, z € C,, = ¢;(x) € Cy, so

$i(Cy, = Cr N V. (6.124)
So,
¢(6:(Cy.)) = fF(CrN V). (6.125)
Then,
FCnnw =Jo(g:(Cy)). (6.126)
Sard’s Theorem tells us that ¢;,(Cy,) is a set of measure zero in U, so
U - Ugi(C’gi) is non-empty, so (6.127)
W — f(Cy) is also non-empty. (6.128)
In fact, this set is not only non-empty, but is a very, very “full” set. O

Let fo, f1 : X — Y be proper C* maps. Suppose there exists a proper C*° map
F: X x[0,1] = Y such that F(z,0) = fo(z) and F(z,1) = fi(z). Then

deg(fo) = deg(f1)- (6.129)

In other words, the degree is a homotopy. The proof of this is essential the same as
before.

6.9 Hopf Theorem

The Hopf Theorem is a nice application of the homotopy invariance of the degree.
Define the n-sphere
S*={veR" ||| =1} (6.130)

Hopf Theorem. Let n be even. Let f : 8™ — R be a C* map. Then, for some
ve S,
f(v) = Av, (6.131)

for some scalar \ € R.
Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v).

Consider w — (v, w)v = w — wy. It follows that w — w; # 0.
Define a new map f : S™ — S™ by

; f(v) = (v, f(z))

1) = T =, @) (6.152)




Note that (w —w;) L v, so f(v) L v.
Define a family of functions

fooSm—Sm (6.133)
fi(v) = (cost)v + (sint)w, (6.134)
where @ = f(v) has the properties ||@|| =1 and @ L v.
We compute the degree of f;. When t =0, f; = id, so
deg(fi) = deg(fo) = 1. (6.135)
When t = 7, fi(v) = —v. But, if n is even, a map from S™ — S™ mapping v — (—v)
has degree —1. We have arrived at a contradiction. O]



