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Lecture 36

The first problem on today’s homework will be to prove the inverse function 

theorem for manifolds. Here we state the theorem and provide a sketch of the proof. 
Let X, Y be n­dimensional manifolds, and let f : X → Y be a C ∞ map with 

f(p) = p1. 

Theorem 6.39. If dfp : TpX → Tp1Y is bijective, then f maps a neighborhood V of 
p diffeomorphically onto a neighborhood V1 of p1. 

Sketch of proof: Let φ : U → V be a parameterization of X at p, with φ(q) = p. 
Similarly, let φ1 : U1 → V1 be a parameterization of Y at p1, with φ1(q1) = p1. 

Show that we can assume that f : V → V1 (Hint: if not, replace V by V ∩ f−1(V1)). 
Show that we have a diagram 

�⏐⏐ 

f 
V V1−−−→ �⏐⏐
 (6.114) φ φ1 

g−−−→ U U1, 

which defines g, 

g = φ−1 
1 ◦ f ◦ φ, (6.115) 

g(q) = q1. (6.116) 

So, 
(dg)q = (dφ1)

−1 
q1 
◦ dfp ◦ (dφ)q. (6.117) 

Note that all three of the linear maps on the r.h.s. are bijective, so (dg)q is a bijection. 
Use the Inverse Function Theorem for open sets in Rn . 

This ends our explanation of the first homework problem.

Last time we showed the following. Let X, Y be n­dimensional manifolds, and let


f : X → Y be a proper C ∞ map. We can define a topological invariant deg(f) such 
that for every ω ∈ Ωn

c (Y ), 

f ∗ω = deg(f) ω. (6.118) 
X Y 

There is a recipe for calculating the degree, which we state in the following theo­
rem. We lead into the theorem with the following lemma. 

First, remember that we defined the set Cf of critical points of f by 

⇐ ⇒ dfp : TpX → TqY is not surjective, (6.119) p ∈ Cf 

where q = f(p). 
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Lemma 6.40. Suppose that q ∈ Y − f(Cf ). Then f−1(q) is a finite set. 

Proof. Take p ∈ f−1(q). Since p / Cf , the map dfp is bijective. The Inverse Function ∈
Theorem tells us that f maps a neighborhood Up of p diffeomorphically onto an open 
neighborhood of q. So, Up ∩ f−1(q) = p. 

Next, note that { Up : p ∈ f−1(q)} is an open covering of f−1(q). Since f is 
proper, f−1(q) is compact, so there exists a finite subcover Up1 , . . . , UpN 

. Therefore, 
f−1(q) = { p1, . . . , pN} . 

The following theorem gives a recipe for computing the degree. 

Theorem 6.41. 
N

deg(f) = σpi
,	 (6.120) 

i=1 

where 

σpi 
= 

+1 if dfpi 
: Tpi

X → TqY is orientation preserving, 
(6.121) 

if dfpi 
: Tpi

X → TqY is orientation reversing,− 1 

Proof. The proof is basically the same as the proof in Euclidean space. 

We say that q ∈ Y is a regular value of f if q / f(Cf ). Do regular values exist? ∈
We showed that in the Euclidean case, the set of non­regular values is of measure zero 
(Sard’s Theorem). The following theorem is the analogous theorem for manifolds. 

Theorem 6.42. If q0 ∈ Y and W is a neighborhood of q0 in Y , then W − f(Cf ) is 
non­empty. That is, every neighborhood of q0 contains a regular value (this is known 
as the Volume Theorem). 

Proof. We reduce to Sard’s Theorem. 
The set f−1(q0) is a compact set, so we can cover f−1(q0) by open sets Vi ⊂ X, i = 

1, . . . , N , such that each Vi is diffeomorphic to an open set in Rn . 
Let W be a neighborhood of q0 in Y . We can assume the following: 

1. W is diffeomorphic to an open set in Rn , �

2. f−1(W ) ⊂ Vi (which is Theorem 4.3 in the Supp. Notes), 

3.	 f(Vi) ⊆ W (for, if not, we can replace Vi with Vi ∩ f−1(W )). 

Let U and the sets Ui, i = 1, . . . , N , be open sets in Rn . Let φ : U W and the → 
maps φi : Ui → Vi be diffeomorphisms. We have the following diagram: 

f −−−→
 W
�⏐⏐
 (6.122)

�⏐⏐ 

Vi 

φi,∼= φ,∼= 

gi 
U, Ui −−−→ 
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which define the maps gi, 
gi = φ−1 ◦ f ◦ φi. (6.123) 

By the chain rule, x ∈ Cgi 
= ⇒ φi(x) ∈ Cf , so 

φi(Cgi 
= Cf ∩ Vi. (6.124) 

So, 
φ(gi(Cgi

)) = f(Cf ∩ Vi). (6.125) 

Then, 

 
f(Cf ) ∩ W = φ(gi(Cgi

)). (6.126) 
i 

Sard’s Theorem tells us that gi(Cgi
) is a set of measure zero in U , so 

 
gi(Cgi

) is non­empty, so (6.127) U − 

W − f(Cf ) is also non­empty. (6.128) 

In fact, this set is not only non­empty, but is a very, very “full” set. 

Let f0, f1 : X → Y be proper C∞ maps. Suppose there exists a proper C∞ map 
F : X × [0, 1] → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x). Then 

deg(f0) = deg(f1). (6.129) 

In other words, the degree is a homotopy. The proof of this is essential the same as 
before. 

6.9 Hopf Theorem 

The Hopf Theorem is a nice application of the homotopy invariance of the degree. 
Define the n­sphere


{v ∈ Rn+1
Sn = 1}. (6.130) : ||v|| = 

Hopf Theorem. Let n be even. Let f : Sn → Rn+1 be a C∞ map. Then, for some 
v ∈ Sn , 

f(v) = λv, (6.131) 

for some scalar λ ∈ R. 

Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v). 
Consider w − �v, w�v ≡ w − w1. It follows that w − w1 = 0. 

Define a new map f̃ : Sn Sn by → 

f̃(v) = 
f(v)− �v, f(x)� 

(6.132) 
||f(v)− �v, f(x)�|| 
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Note that (w − w1) ⊥ v, so f̃(v) ⊥ v. 
Define a family of functions 

ft : S
n Sn , (6.133) → 

ft(v) = (cos t)v + (sin t)w̃, (6.134) 

˜ w ⊥ v.where w = f̃(v) has the properties || ̃ 1 and ˜w|| = 
We compute the degree of ft. When t = 0, ft = id, so 

deg(ft) = deg(f0) = 1. (6.135) 

When t = π, ft(v) = −v. But, if n is even, a map from Sn → Sn mapping v → (−v) 
has degree −1. We have arrived at a contradiction. 
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