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Lecture 37


6.10 Integration on Smooth Domains 

Let X be an oriented n­dimensional manifold, and let ω ∈ Ωc
n(X). We defined the 

integral � 
ω, (6.136) 

X 

but we can generalize the integral � 
ω, (6.137) 

D 

for some subsets D ⊆ X. We generalize, but only to very simple subsets called smooth 
domains (essentially manifolds­with­b oundary). The prototypical smooth domain is 
the half plane: 

Hn = {(x1, . . . , xn) ∈ Rn : x1 ≤ 0}. (6.138) 

Note that the boundary of the half plane is 

Bd (Hn) = {(x1, . . . , xn) ∈ Rn : x1 = 0}. (6.139) 

Definition 6.43. A closed subset D ⊆ X is a smooth domain if for every point 
p ∈ Bd (D), there exists a parameterization φ : U → V of X at p such that φ(U ∩
Hn) = V ∩ D. 

Definition 6.44. The map φ is a parameterization of D at p. 

Note that φ : U ∩ Hn → V ∩ D is a homeomorphism, so it maps boundary points 
to boundary points. So, it maps U b = U ∩ Bd (Hn) onto V b = V ∩ Bd (D). 

Let ψ = φ|U b . Then ψ : U b V b is a diffeomorphism. The set U b is an open set →
in Rn−1, and ψ is a parameterization of the Bd (D) at p. We conclude that 

Bd (D) is an (n− 1)­dimensional manifold. (6.140) 

Here are some examples of how smooth domains appear in nature: 
Let f : X → R be a C∞ map, and assume that f−1(0) ∩ Cf = φ (the empty set). 

That is, for all p ∈ f−1(0), dfp = 0. 

Claim. The set D = {x ∈ X : f(x) ≤ 0} is a smooth domain. 

Proof. Take p ∈ Bd (D), so p = f−1(0). Let φ : U → V be a parameterization of X 
at p. Consider the map g = f φ : U → R. Let q ∈ U and p = φ(q). Then ◦ 

(dgq) = dfp ◦ (dφ)q. (6.141) 

We conclude that dgq = 0. 
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By the canonical submersion theorem, there exists a diffeomorphism ψ such that 
ψ = π, where π is the canonical submersion mapping (x, . . . , xn) → x1. We can g ◦

write simply g ◦ ψ = x1. Replacing φ = φold by φ = φnew = φold ◦ ψ, we get the 
new map φ : U → V which is a parameterization of X at p with the property that 
f ◦ φ(x1, . . . , xn) = x1. Thus, φ maps Hn ∩ U onto D ∩ V . 

We give an example of using the above claim to construct a smooth domain. Let 
X = Rn, and define 

2 2f(x) = 1 − (x1 + + xn). (6.142) · · · 
By definition, 

f(x) ≤ 0 (6.143) ⇐⇒ x ∈ Bn , 

where Bn = {x ∈ Rn : ||x|| ≤ 1} is the “unit ball.” So, the unit ball Bn is a smooth 
domain. 

We now define orientations of smooth domains. Assume that X is oriented, and 
let D be a smooth domain. Let φ : U → V be a parameterization of D at p. 

Definition 6.45. The map φ is an oriented parameterization of D if it is an oriented 
parameterization of X. 

Assume that dim X = n > 1. We show that you can always find an oriented 
parameterization. 

Let φ : U → V be a parameterization of D at p. Suppose that φ is not oriented. 
That is, as a diffeomorphism φ is orientation reversing. Let A : Rn Rn be the map → 

A(x1, . . . , xn) = (x1, . . . , xn−1,−xn). (6.144) 

Then A maps Hn → Hn, and φ ◦ A is orientation preserving. So, φ A is an oriented ◦
parameterization of D at p. 

Now, let φ : U → V be an oriented parameterization of D at p. We define 

U b = U ∩ Bd (Hn), (6.145) 

V b = V ∩ Bd (D), (6.146) 

ψ = φ|U b , (6.147) 

where ψ is a parameterization of Bd (D) at p. 
We oriented Bd (D) at p by requiring ψ to be an oriented parameterization. We 

need to check the following claim. 

Claim. The definition of oriented does not depend on the choice of parameterization. 

Proof. Let φi : Ui → Vi, i = 1, 2, be oriented parameterizations of D at p. Define 

U1,2 = φ−1(V1 ∩ V2), (6.148) 1 

U2,1 = φ−1(V1 ∩ V2), (6.149) 2 
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from which we obtain the following diagram:


V1 ∩ V2 

φ1 

�⏐⏐ 

U1,2 

V1 ∩ V2 

φ2 

g−−−→ 

�⏐⏐ (6.150) 

U2,1, 

which defines a map g. By the properties of the other maps φ1, φ2, the map g is an 
orientation preserving diffeomorphism of U1,2 onto U2,1. Moreover, g maps 

U b 
1,2 = Bd (Hn) ∩ U1,2 (6.151) 

onto 
U b 

2,1 = Bd (Hn) ∩ U2,1. (6.152) 

Let h = g U1
b
,2, so h : U1

b
,2 → U2

b
,1. We want to show that h is orientation preserving. |

To show this, we write g and h in terms of coordinates. 

g = (g1, . . . , gn), where gi = gi(x1, . . . , xn). (6.153) 

So, 

⇐⇒ 

⎧ ⎪⎨ ⎪⎩


g1(x1, . . . , xn) < 0 if x1 < 0, 

g1(x1, . . . , xn) > 0 if x1 > 0, (6.154) g maps Hn to Hn 

g1(0, x2, . . . , xn) = 0 

These conditions imply that 

∂ 
∂x1 
g1(0, x2, . . . , xn) ≥ 0, 

(6.155) ∂ g1(0, x2, . . . , xn) = 0, for i = 1.
∂xi 

The map h in coordinates is then 

h = h(x2, . . . , xn) 
(6.156) 

= (g(0, x2, . . . , xn), . . . , gn−1(0, x2, . . . , xn)) , 

which is the statement that h = g| Bd (Hn). 
At the point (0, x2, . . . , xn) ∈ U1

b
,2, ⎤⎡ 

Dg
=

⎢⎢⎢⎣


∂g1 0 0
∂x1 

· · · 
∗ 
. . . Dh 
∗ 

⎥⎥⎥⎦

.
 (6.157) 

The matrix Dg is an n× n block matrix containing the (n− 1) × (n− 1) matrix Dh,

because 

∂hi 
∂xj 

= 
∂gi 
∂xj 

(0, x2, . . . , xn), i, j > 1. (6.158) 
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Note that 
∂g1

det(Dg) = det(Dh). (6.159) 
∂x1 

We know that the l.h.s > 0 and that ∂g1 > 0, so det(Dh) > 0. Thus, the map 
∂x1 

h : U1
b
,2 → U2

b
,1 is orientation preserving. 

To repeat, we showed that in the following diagram, the map h is orientation 
preserving: 

V1 ∩ V2 ∩ Bd (D) 

ψ1 

�⏐⏐ 

V1 ∩ V2 ∩ Bd (D) 

ψ2 

�⏐⏐ (6.160) 

U b h 
1,2 −−−→ U2

b
,1. 

We conclude that ψ1 is orientation preserving if and only if ψ2 is orientation preserv­
ing. 
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