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Lecture 38

We begin with a review from last time. 
Let X be an oriented manifold, and let D ⊆ X be a smooth domain. Then 

Bd (D) = Y is an oriented (n − 1)­dimensional manifold. 
We defined integration over D as follows. For ω ∈ Ωn

c (X) we want to make sense 
of the integral 

ω. (6.161) 
D 

We look at some special cases: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p, where V ⊆ Int D. For ω ∈ Ωc
n(X), we define 

ω = ω = φ∗ω = φ∗ω. (6.162) 
D V U Rn 

This is just our old definition for 

ω. (6.163) 
V 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization of D 
at p. That is, φ maps U ∩ Hn onto V ∩ D. For ω ∈ Ωn

c (V ), we define 

ω = φ∗ω. (6.164) 
D Hn 

We showed last time that this definition does not depend on the choice of parameter­
ization. 

General case: For each p ∈ Int D, let φ : Up → Vp be an oriented parameterization 
of X at p with Vp ⊆ Int D. For each p ∈ Bd (D), let φ : U Vp be and oriented p →
parameterization of D at p. Let 

U = Up, (6.165) 
p∈D 

where the set U = {Up : p ∈ D} be an an open cover of U . Let ρi, i = 1, 2, . . . , be a 
partition of unity subordinate to this cover. 

Definition 6.46. For ω ∈ Ωn
c (X) we define the integral 

ω = ρiω. (6.166) 
D i D 

Claim. The r.h.s. of this definition is well­defined. 
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Proof. Since the ρi’s are a partition of unity, there exists an N such that 

supp ω ∩ supp ρi = φ, (6.167) 

for all i > N . 
Hence, there are only a finite number of non­zero terms in the summand. More­

over, each summand is an integral of one of the two types above (cases 1 and 2), and 
is therefore well­defined. 

Claim. The l.h.s. of the definition does not depend on the choice of the partition of 
unity ρi. 

Proof. We proved an analogous assertion about the definition of 
X 
ω a few lectures 

ago, and the proof of the present claim is exactly the same. 

6.11 Stokes’ Theorem 

Stokes’ Theorem. For all ω ∈ Ωn−1(X),c 

dω = ω. (6.168) 
D Bd (D) 

Proof. Let ρi, i = 1, 2 . . . , be a partition of unity as defined above. Replacing ω with 
ρiω, it suffices to prove this for the two special cases below: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p with V ⊆ Int D. If ω ∈ Ωn−1(V ), then c 

dω = φ∗dω = dφ∗ω = 0. (6.169) 
D Rn Rn 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization 
of D at p. Let U b = U ∩ Bd (Hn), and let V b = V ∩ Bd (D). Define ψ : φ U b, so |
ψ : U b → V b is an oriented parameterization of Bd (D) at p. If ω ∈ Ωn−1(V ), then c 

φ∗ω = fi(x1, . . . , xn)dx1 ∧ · · · ∧ � n. (6.170) dxi ∧ · · · ∧ dx

What is ψ∗ω? Let ι : Rn−1 → Rn be the inclusion map mapping Bd (Hn) → Rn . 
The inclusion map ι maps (x2, . . . , xn) → (0, x2, . . . , xn). Then φ ι = ψ, so ◦

ψ∗ω = ι∗φ∗ω 
n

= ι∗ 
� 

fidx1 ∧ · · · ∧ � n . 
(6.171) 

dxi ∧ · · · ∧ dx
i=1 

But, 
ι∗dx1 = dι∗x1 = 0, since ι∗x1 = 0. (6.172) 
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So, 

ψ∗ω = ι∗f1dx2 ∧ · · · ∧ dxn 
(6.173) 

= f1(0, x2, . . . , xn)dx2 ∧ · · · ∧ dxn. 
Thus, � � � 

ω = ψ∗ω = f1(0, x2, . . . , xn)dx2 . . . dxn. (6.174) 
Bd (D) Rn−1 Rn−1 

On the other hand, � � � 
dω = φ∗dω = dφ∗ω. (6.175) 

D Hn Hn 

One should check that �� � 
dφ∗ω = d fidx1 ∧ · · · ∧ � nxxi ∧ · · · ∧ dx

= 

�� 
(−1)i−1 ∂fi 

� 

n. 
(6.176) 

∂xi 
dx1 ∧ · · · ∧ dx

So, each summand 
∂fi 

dx1 . . . dxn (6.177) 
∂xi 

can be integrated by parts, integrating first w.r.t. the ith variable. For i > 1, this is 
the integral 

∞ ∂fi xi=∞ 

∂xi 
dxi = fi(x1, . . . , xn)|xi=−∞ 

(6.178) −∞ 

= 0. 

For i = 1, this is the integral 
∞ ∂f1 

(x1, . . . , xn)dx1 = f1(0, x2, . . . , xn). (6.179) 
∂x1−∞ 

Thus, the total integral of φ∗dω over Hn is 

f1(0, x2, . . . , xn)dx2 . . . dxn. (6.180) 

We conclude that � � 
dω = ω. (6.181) 

D Bd (D) 

We look at some applications of Stokes’ Theorem. 
Let D be a smooth domain. Assume that D is compact and oriented, and let 

Y = Bd (D). Let Z be an oriented n­manifold, and let f : Y → Z be a C∞ map. 

Theorem 6.47. If f extends to a C∞ map F : D Z, then → 

deg(f) = 0. (6.182) 

Corollary 9. The Brouwer fixed point theorem follows from the above theorem. 
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