Lecture 38

We begin with a review from last time.

Let X be an oriented manifold, and let D C X be a smooth domain. Then
Bd (D) =Y is an oriented (n — 1)-dimensional manifold.

We defined integration over D as follows. For w € Q7(X) we want to make sense

of the integral
/ w. (6.161)
D
We look at some special cases:

Case 1: Let p € Int D, and let ¢ : U — V be an oriented parameterization of X
at p, where V C Int D. For w € Q?(X), we define

/Dw:/vwz/Ugﬁ*w: - O'w. (6.162)

This is just our old definition for
/ o (6.163)
v

Case 2: Let p € Bd (D), and let ¢ : U — V be an oriented parameterization of D
at p. That is, ¢ maps U NH" onto V N D. For w € Q(V), we define

/ w= O'w. (6.164)
D H»

We showed last time that this definition does not depend on the choice of parameter-
ization.

General case: For each p € Int D, let ¢ : U, — V,, be an oriented parameterization
of X at p with V,, C Int D. For each p € Bd (D), let ¢ : U, — V), be and oriented

parameterization of D at p. Let

U=> U, (6.165)

peED

where the set i = {U, : p € D} be an an open cover of U. Let p;, i =1,2,..., be a
partition of unity subordinate to this cover.

Definition 6.46. For w € Q7(X) we define the integral

/Dw:zi:/Dpiw. (6.166)

Claim. The r.h.s. of this definition is well-defined.



Proof. Since the p;’s are a partition of unity, there exists an N such that

supp w Nsupp p; = ¢, (6.167)

for all ¢ > N.

Hence, there are only a finite number of non-zero terms in the summand. More-
over, each summand is an integral of one of the two types above (cases 1 and 2), and
is therefore well-defined. O

Claim. The l.h.s. of the definition does not depend on the choice of the partition of
unity p;.

Proof. We proved an analogous assertion about the definition of [ w a few lectures
ago, and the proof of the present claim is exactly the same. O

6.11 Stokes’ Theorem
Stokes’ Theorem. For allw € Q" (X))

/dw—/ w. (6.168)
D Bd (D)

Proof. Let p;; i =1,2..., be a partition of unity as defined above. Replacing w with
> piw, it suffices to prove this for the two special cases below:

Case 1: Let p € Int D, and let ¢ : U — V be an oriented parameterization of X
at p with V CInt D. If w € Q2 1(V), then

/D do= [ g / g =0, (6.169)

Case 2: Let p € Bd(D), and let ¢ : U — V be an oriented parameterization
of D at p. Let U® = UNBd(H"), and let V® = V N Bd (D). Define v : ¢|U’ so
¥ : U’ — V'’ is an oriented parameterization of Bd (D) at p. If w € Q*~*(V), then

O'w = Z filzy, .. xp)doy A A c@ A ANdx,. (6.170)
What is ¢*w? Let ¢ : R"™! — R™ be the inclusion map mapping Bd (H") — R".
The inclusion map ¢ maps (za,...,z,) — (0,z9,...,2,). Then ¢p o1 =1, so
n —~ 6.171
:L*(Zfidxl/\---/\dxi/\---/\dxn). ( )
i=1
But,
Cdry = di*zy =0, since *z; = 0. (6.172)



So,
V'w =" fidrag A Ndxy,

6.173
= f1(0, 29, ..., x,)dxa A -+ - N day. ( )
Thus,
/ W= Yw = f1(0, 29, ..., xp)dzs . . . dxy,. (6.174)
Bd (D) Rn—1 Rn—1

On the other hand,

/ dw = ¢ dw = / do*w. (6.175)
D HTL n

One should check that
do*w = (Z fidxy N NTT; N N dxn>

6.176
— (Z(—l)i‘l%) dzy A - Ady,. (0470

ofi

ox;
can be integrated by parts, integrating first w.r.t. the ith variable. For ¢ > 1, this is
the integral

So, each summand

dxy ... dz, (6.177)

< Of; _
——dx; = fi(x1,..., )32
o O, Jilz )l (6.178)
=0.
For ¢ = 1, this is the integral
<0
h ——(x1,...,xp)dx; = f1(0,29,...,2,). (6.179)
0x1
Thus, the total integral of ¢*dw over H" is
/fl(O, Toy ..., Ty)dxs . .. dT,. (6.180)
We conclude that
/ dw = / w. (6.181)
D Bd (D)
]

We look at some applications of Stokes” Theorem.
Let D be a smooth domain. Assume that D is compact and oriented, and let
Y = Bd (D). Let Z be an oriented n-manifold, and let f:Y — Z be a C* map.

Theorem 6.47. If f extends to a C* map F : D — Z, then
deg(f) = 0. (6.182)

Corollary 9. The Brouwer fized point theorem follows from the above theorem.



