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Lecture 4


2.2 Conditions for Differentiability 

In this lecture we will discuss conditions that guarantee differentiability. First, we 
begin with a review of important results from last lecture. 

Let U be an open subset of Rn, let f : U → Rn be a map, and let a ∈ U . 
We defined f to be differentiable at a if there exists a linear map B : Rn Rm 

such that for h ∈ Rn 

→ 
− {0}, 

f(a+ h)− f(a)−Bh 
0 as h 0. (2.24) 

|h| 
→ → 

If such a B exists, then it is unique and B = Df(a). The matrix representing B is 
∂fithe Jacobian matrix Jf (a) = 
∂xj 

(a) , where f = (f1, . . . , fm). 

Note that the mere existence of all of the partial derivatives in the Jacobian matrix 
does not guarantee differentiability. 

Now we discuss conditions that guarantee differentiability. 

∂fiTheorem 2.7. Suppose that all of the partial derivatives 
∂xj 

in the Jacobian matrix 

exist at all points x ∈ U , and that all of the partial derivatives are continuous at 
x = a. Then f is differentiable at a. 

Sketch of Proof. This theorem is very elegantly proved in Munkres, so we will simply 
give the general ideas behind the proof here. 

First, we look at the case n = 2,m = 1. The main ingredient in the proof is the 
Mean Value Theorem from 1­D calculus, which we state here without proof. 

Mean Value Theorem. Given an interval [a, b] ⊆ R and a map φ : [a, b] R, if φ→
is continuous on [a, b] and differentiable on (a, b), then there exists a point c ∈ (a, b) 
such that φ(b)− φ(a) = φ�(c)(b− a). 

Now we continue with the proof. Let f be a map f : U → R, where U ⊆ R2 . So, 
f is a function of two variables f = f(x1, x2). Consider a point a = (a1, a2) ∈ U and 
any point h ∈ R2 −{0} “close” to zero, where by close we mean a+ h ∈ U . We want 
to compute f(a+ h)− f(a). 

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2) 

= f(a1 + h1, a2 + h2)− f(a1, a2 + h2) (2.25) 

+ f(a1, a2 + h2)− f(a1, a2). 

Thinking of the first two terms as functions of the first argument only, and thinking 
of the last two terms as functions of the second term only, and applying the Mean 
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Value Theorem to each pair of terms, we obtain 

∂f 
f(a + h)− f(a) = (c1, a2 + h2)h1

∂x1 (2.26) 
∂f 

+ (a1, d2)h2,
∂x2 

where a1 < c1 < a1 + h1 and a2 < d2 < a2 + h2. This can be rewritten as 

∂f ∂f 
f(a + h)− f(a) = (c)h1 + (d)h2, (2.27) 

∂x1 ∂x2 

where c = (c1, a2 + h2) and d = (a1, d2). 
We want to show that (f(a + h) − f(a) − Df(a)h)/ h 0 as h → 0, where | | → 

Using our previously derived expression for f(a+h)−f(a),∂f Df(a) = 
∂x1 

(a), ∂f (a)
∂x2 

. 

we find that 

∂f ∂f 
f(a + h)− f(a)− Df(a)h = f(a + h)− f(a)− (a)h1 − (a)h2

∂x1 ∂x2 

∂f ∂f ∂f ∂f 
= 

∂x1 

(c)− 
∂x1 

(a) h1 + 
∂x2 

(d)− 
∂x2 

(a) h2. 

(2.28) 

We can use the sup norm to show that 

|
∂f ∂f ∂f ∂f 
( (d)− (a)
∂x2 ∂x2 

f(a+h)−f(a)−Df(a)h| (c)− (a)
∂x1 

h1|
+ h2 , (2.29) | ≤ | |
∂x1 

from which it follows that 

(a)
∂x1 

f(a + h)− f(a)− Df(a)h
 ∂f ∂f ∂f ∂f 
( (d)− (a)
∂x2 ∂x2 

| | ≤ 
∂x1 

(c)−
 ,
 (2.30)
+ 
h| | 

where we used the fact that |h| = max( h1 , h2 ).| | | |
Notice that as h → 0, both c → a and d → a, as can be easily seen using the 

following diagram. This means that the r.h.s. of Equation (2.30) goes to zero as h 

goes to zero, because the partial derivatives are continuous. It follows that the l.h.s. 
goes to zero, which completes our proof. 

The proof in n dimensions is similar to the above proof, but the details are harder 
to follow. 
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We now introduce a useful class of functions. 

Definition 2.8. Given U ⊆ Rn and f : U R, we define →

∂f 
(U) ⇐⇒ 

∂xi 

, i = 1, . . . , n exist and are continuous at all points x ∈ U.f ∈ C1

(2.31) 
Similarly, we define 

∂f 
(U) ⇐ 1(U), i = a, . . . , n. (2.32) f ∈ C2 ⇒ 

∂xi 

∈ C

∂f 
(U) ⇐⇒ 

∂xi 

∈ Ck−1(U), i = a, . . . , n. (2.33) f ∈ Ck

k(U)∀k. (2.34) f ∈ C∞(U) ⇐⇒ f ∈ C

If f is multiply differentiable, then you can perform higher order mixed partial 
derivatives. 

One of the fundamental theorems of calculus is that the order of the partial deriva­
tives can be taken in any order. For example, 

∂ ∂ ∂ ∂ ∂2f 
= (2.35) 

∂xi ∂xj ∂xj ∂xi 

≡ 
∂xi∂xj 

Let’s do the proof for this case. Let U ⊆ R2 and f = f(x1, x2). We prove the following 
claim: 

Claim. � � � � 
∂ ∂ ∂ ∂ 

= . (2.36) 
∂xi ∂xj ∂xj ∂xi 

Proof. Take a ∈ U written in components as a = (a1, a2), and take h = (h1, h2) ∈
R2 − {0} such that a+ h ∈ U . That is, take h ≈ 0. 

Define 

Δ(h) = f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− f(a1 + h1, a2) + f(a1, a2), (2.37) 

and define 
φ(s) = f(a1 + h1, s)− f(a1, s), (2.38) 

where a2 ≤ s ≤ a2 + h2. We find that 

Δ(h) = φ(a2 + h2)− φ(a2) 
(2.39) 

= φ�(c2)h2, a2 < c2 < a2 + h2, 
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by the Mean Value Theorem. Writing out φ� using partial derivatives of f , and using 
the Mean Value Theorem again, we find 

∂f ∂f 
Δ(h) = (a1 + h1, c2)− (a1, c2) h2

∂x2 ∂x1 

∂ ∂f 
= (c1, c2)h1 h2, a1 < c1 < a1 + h1

∂x1 ∂x2� � �� (2.40) 
∂ ∂ 

= f (c)h1h2
∂x1 ∂x2 

∂ ∂ 
= f (d)h1h2,

∂x2 ∂x1 

where we obtained the last line by symmetry. This shows that � � � � 
∂ ∂f ∂ ∂f 

∂x1 ∂x2 

(c) = 
∂x2 ∂x1 

(d). (2.41) 

As h → 0, c → a and d → a, so � � � � 
∂ ∂f ∂ ∂f 

∂x1 ∂x2 

(a) = 
∂x2 ∂x1 

(a), (2.42) 

for any a ∈ U . 

The above argument can be iterated for f ∈ C3 3(4), etc. (U), f ∈ C
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