Lecture 5

2.3 Chain Rule

Let U and v be open sets in R”. Consider maps f : U — V and g : V — R*.
Choose a € U, and let b = f(a). The composition go f : U — R is defined by

(g0 f)(x) = g(f(x)).

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then go f is
differentiable at a, and the derivative is

(Dg o f)(a) = (Dg)(b) o Df(a). (2.43)

Proof. This proof follows the proof in Munkres by breaking the proof into steps.

e Step 1: Let h € R" — {0} and h=0, by which we mean that h is very close to
zero. Consider A(h) = f(a+ h) — f(a), which is continuous, and define

fla-+h) = f(a) = Df(@h

F(h) = 2.44
(n : (2.44)
Then f is differentiable at a if and only if F'(h) — 0 as h — 0.
F(h) = Ah) Th?f(a)h, (2.45)
S0
A(h) = Df(a)h + |h|F(h). (2.46)
Lemma 2.10. Alh
|§L|) is bounded. (2.47)
Proof. Define
IDf(@)] = sup | 5(a) (2.48)
a) = sup B a)l, .
and note that
of
% (4) = Df(a)e. (2.49)

where the e; are the standard basis vectors of R™. If h = (hy,...,h,), then
h => hie;. So, we can write

Df(a)h = hDf(a)e; =Y hlg—;(a). (2.50)



It follows that

“”@MSZWQ£W> (2.51)
< mlh|[Df(a)l.
By Equation 2.46,
|A(R)| < m|h[|Df(a)| + |h|F(h), (2.52)
|ﬁ$”§nﬂﬁ@ﬂ+FW) (2.53)
0

Step 2: Remember that b = f(a), g : V — R¥ and b € V. Let k=0. This
means that k& € R” — {0} and that k is close to zero. Define

_g(b+ k) —g(b) — (Dg)(b)k

G(k) = I , (2.54)
so that
g(b+ k) —g(b) = Dg(b)k + |k|G(k). (2.55)
We proceed to show that g o f is differentiable at a.
go flath) = go f(@) = g(f(a+h) - g(F(@) 256

=g(b+ A(h)) —g(b),
where f(a) = b and f(a+ h) = f(a) + A(h) = b+ A(h). Using Equation 2.55
we see that the above expression equals
Dg(b)A(R) + |A(R)|G(A(R)). (2.57)
Substituting in from Equation 2.46, we obtain
goflat+h)—gofla)=...
= Dg(b)(Df(a)h + |h|F(h))+ ...
= Dyg(b) o D f(a)h +[h|Dg(b)F(h) + |A(R)|G(A(h))
(2.58)
This shows that

goflat+h)—go fla)— Dg(b) o Df(a)h
||

— pg) P + 2 Gramy).

|
(2.59)
We see in the above equation that g o f is differentiable at a if and only if the
Lh.s. goes to zero as h — 0. It suffices to show that the r.h.s. goes to zero
as h — 0, which it does: F'(h) — 0 as h — 0 because f is differentiable at a;
G(A(h)) — 0 because g is differentiable at b; and A(h)/|h| is bounded.



]

We consider the same maps g and f as above, and we write out f in component
form as f = (f1,..., fn) where each f; : U — R. We say that f is a C" map if each
fi € C"(U). We associate D f(z) with the matrix

afi
a.’L’j

Df(x) ~ { (x)} . (2.60)

By definition, f is C" (that is to say f € C"(U)) if and only if Df is C"L.

Theorem 2.11. If f: U -V CR" is a C" map and g : V — RP is a C" map, then
gof:U—RPisalC" map.

Proof. We only prove the case r = 1 and leave the general case, which is inductive,
to the student.

e Caser =1:

dgi
Dy f(o) = Dal ()0 Df ) ~ | 5 (0)] (261
j
The map ¢ is C*, which implies that dg;/dz; is continuous. Also,
O
Df(z) ~ L%J} (2.62)

is continuous. It follows that Dg o f(z) is continuous. Hence, g o f is C'.

2.4 The Mean-value Theorem in n Dimensions
Theorem 2.12. Let U be an open subset of R™ and f : U — R a C! map. Fora € U,
h € R", and h=0,

fla+h) = f(a)=Df(c)h, (2.63)

where ¢ is a point on the line segment a +th,0 <t < 1, joining a to a+ h.
Proof. Define a map ¢ : [0,1] — R by ¢(t) = f(a + th). The Mean Value Theorem

implies that ¢(1) — ¢(0) = ¢'(c) = (Df)(c)h, where 0 < ¢ < 1. In the last step we
used the chain rule. O



2.5 Inverse Function Theorem

Let U and V be open sets in R”, and let f : U — V be a C! map. Suppose there
exists a map g : V — U that is the inverse map of f (which is also C!). That is,
g(f(z)) = x, or equivalently g o f equals the identity map.

Using the chain rule, if a € U and b = f(a), then

(Dg)(b) = the inverse of Df(a). (2.64)
That is, Dg(b) o D f(a) equals the identity map. So,
Dg(b) = (D f(a))™ (2.65)

However, this is not a trivial matter, since we do not know if the inverse exists. That
is what the inverse function theorem is for: if D f(a) is invertible, then ¢ exists for
some neighborhood of @ in U and some neighborhood of f(a) in V. We state this
more precisely in the following lecture.





