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Lecture 5


2.3 Chain Rule 

Let U and v be open sets in Rn . Consider maps f : U → V and g : V Rk .→
Choose a ∈ U , and let b = f(a). The composition g ◦ f : U Rk is defined by →
(g ◦ f)(x) = g(f(x)). 

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then g ◦ f is 
differentiable at a, and the derivative is 

(Dg ◦ f)(a) = (Dg)(b) ◦Df(a). (2.43) 

Proof. This proof follows the proof in Munkres by breaking the proof into steps. 

• Step 1: Let h ∈ Rn − {0} and h =̇0, by which we mean that h is very close to 
zero. Consider Δ(h) = f(a + h)− f(a), which is continuous, and define 

F (h) = 
f(a + h)− f(a)−Df(a)h 

. (2.44) 
a| |


Then f is differentiable at a if and only if F (h) → 0 as h 0.
→

F (h) =
Δ(h)−Df(a)h

, (2.45) 
h| | 

so 
Δ(h) = Df(a)h+ |h|F (h). (2.46) 

Lemma 2.10. 
Δ(h) 

is bounded. (2.47) 
h| | 

Proof. Define 

,
 (2.48)

∂f 

Df(a) (a)| = sup |
∂xii 

and note that 
∂f 

(a) = Df(a)ei, (2.49) 
∂xi 

ei are the standard basis vectors of Rnwhere the 
h = hiei. So, we can write 

. If h = (h1, . . . , hn), then 

∂f 
Df(a)h = hiDf(a)ei = hi (a). (2.50) 

∂xi 
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It follows that


m

Df(a)h hi≤ 
∂f 

(a)| | 
∂xi (2.51) i=1 

.≤ m|h||Df(a)|

By Equation 2.46, 
Δ(h)| ≤ m|h||Df(a)| + h F (h), (2.52) | | |

so

Δ(h)|
|
|h|

≤ m|Df(a)| + F (h). (2.53) 

• Step 2: Remember that b = f(a), g : V → Rk, and b ∈ V . Let k =̇0. This 
means that k ∈ Rn − {0} and that k is close to zero. Define 

G(k) = 
g(b+ k)− g(b)− (Dg)(b)k

, (2.54) 
k| | 

so that 
g(b+ k)− g(b) = Dg(b)k + k G(k). (2.55) | |


We proceed to show that g ◦ f is differentiable at a.


f(a + h)− g ◦ f(a) = g(f(a + h)) − g(f(a))g ◦ 
(2.56) 

= g(b+ Δ(h)) − g(b), 

where f(a) = b and f(a + h) = f(a) + Δ(h) = b + Δ(h). Using Equation 2.55 
we see that the above expression equals 

Dg(b)Δ(h) + |Δ(h) G(Δ(h)). (2.57) |

Substituting in from Equation 2.46, we obtain 

f(a + h)− g ◦ f(a) = . . . g ◦ 

= Dg(b)(Df(a)h+ |h|F (h)) + . . . 

= Dg(b) ◦ Df(a)h+ h Dg(b)F (h) + Δ(h) G(Δ(h))| | | |
(2.58) 

This shows that


g ◦ f(a + h)− g ◦ f(a)− Dg(b) ◦ Df(a)h 
= Dg(b)F (h) + 

Δ(h)

G(Δ(h)). 

h h| | | | 
(2.59) 

We see in the above equation that g ◦ f is differentiable at a if and only if the 
l.h.s. goes to zero as h → 0. It suffices to show that the r.h.s. goes to zero 
as h → 0, which it does: F (h) → 0 as h 0 because f is differentiable at a;→
G(Δ(h)) → 0 because g is differentiable at b; and Δ(h)/ h is bounded. | | 
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We consider the same maps g and f as above, and we write out f in component 
form as f = (f1, . . . , fn) where each fi : U → R. We say that f is a Cr map if each 

r(U). We associate Df(x) with the matrix fi ∈ C

∂fi
Df(x) ∼ 

∂xj 

(x) . (2.60) 

By definition, f is Cr (that is to say f ∈ Cr(U)) if and only if Df is Cr−1 . 

rTheorem 2.11. If f : U → V ⊆ Rn is a C map and g : V → Rp is a Cr map, then 
rg ◦ f : U → Rp is a C map. 

Proof. We only prove the case r = 1 and leave the general case, which is inductive, 
to the student. 

• Case r = 1: � � 

Dg ◦ f(x) = Dg(f(x)) ◦Df(x) ∼ 
∂gi 

∂xj 

f(x) . (2.61) 

The map g is C1, which implies that ∂gi/∂xj is continuous. Also, � � 

Df(x) ∼ 
∂fi 

∂xj 

(2.62) 

is continuous. It follows that Dg ◦ f(x) is continuous. Hence, g ◦ f is C1 . 

2.4 The Mean­value Theorem in n Dimensions 

Theorem 2.12. Let U be an open subset of Rn and f : U → R a C1 map. For a ∈ U , 
h ∈ Rn, and h =̇0, 

f(a + h)− f(a) = Df(c)h, (2.63) 

where c is a point on the line segment a + th, 0 ≤ t ≤ 1, joining a to a + h. 

Proof. Define a map φ : [0, 1] → R by φ(t) = f(a + th). The Mean Value Theorem 
implies that φ(1) − φ(0) = φ�(c) = (Df)(c)h, where 0 < c < 1. In the last step we 
used the chain rule. 

3




2.5 Inverse Function Theorem 

Let U and V be open sets in Rn, and let f : U → V be a C1 map. Suppose there 
exists a map g : V → U that is the inverse map of f (which is also C1). That is, 
g(f(x)) = x, or equivalently g ◦ f equals the identity map. 

Using the chain rule, if a ∈ U and b = f(a), then 

(Dg)(b) = the inverse of Df(a). (2.64) 

That is, Dg(b) ◦ Df(a) equals the identity map. So, 

Dg(b) = (Df(a))−1 (2.65) 

However, this is not a trivial matter, since we do not know if the inverse exists. That 
is what the inverse function theorem is for: if Df(a) is invertible, then g exists for 
some neighborhood of a in U and some neighborhood of f(a) in V . We state this 
more precisely in the following lecture. 
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