Lecture 6

We begin with a review of some earlier definitions.
Let 06 > 0 and a € R™.

Euclidean ball: Bs(a) = {z e R":|| x —a ||< §} (2.66)

Supremum ball: Rs(a) = {x € R" : |z — a| <}
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Note that the supremum ball is actually a rectangle. Clearly, Bs(a) C Rs(a). We use
the notation Bs = Bs(0) and Rs = Rs(0).

Continuing with our review, given U open in R”, a map f : U — R¥, and a point
a € U, we defined the derivate D f(a) : R® — R¥ which we associated with the matrix

Df(a) ~ {gjﬂ (a)} , (2.68)
and we define o
D f(a)] = Sup 893; (a) (2.69)
Lastly, we define U C R" to be convex if
a,belU = (1—t)a+theUforall0<t<1. (2.70)

Before we state and prove the Inverse Function Theorem, we give the following
definition.

Definition 2.13. Let U and V be open sets in R” and f : U — V a C" map. The
map f is is a C" diffeomorphism if it is bijective and f~!:V — U is also C".

Inverse Function Theorem. Let U be an open set in R™, f : U — R™ a C" map,
and a € U. If Df(a) : R™ — R™ is bijective, then there exists a neighborhood Uy of a
in U and a neighborhood V' of f(a) in R™ such that F|U; is a C" diffeomorphism of
U1 at V.

Proof. To prove this we need some elementary multi-variable calculus results, which
we provide with the following lemmas.

Lemma 2.14. Let U be open in R™ and F : U — R* be a C' mapping. Also assume
that U is convez. Suppose that |Df(a)| < ¢ for all A€ U. Then, for all x,y € U,

|f(x) = f(y)] < nefe —yl. (2.71)



Proof. Consider any x,y € U. The Mean Value Theorem says that for every ¢ there
exists a point ¢ on the line joining x to y such that

) = i) =3 e~ 1) (2.72)

It follows that

af;
i) — fily)] < Z] fi(4
<Y clay -yl (2.73)
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This is true for each i, so |f(z) — f(y)| < nc|z — y| O

Lemma 2.15. Let U be open in R™ and f : U — R a C* map. Suppose f takes a
manimum value at some point b € U. Then

0

85() 0,i=1,...,n. (2.74)
Proof. We reduce to the one-variable result. Let b = (by,...,b,) and let ¢(t) =
f(by,...,bi_1,t,biy1,...,by,), which is C* near b; and has a minimum at b;. We know
from one-variable calculus that this implies that g—‘f(bi) = 0. O

In our proof of the Inverse Function Theorem, we want to show that f is locally
a diffeomorphism at a. We will make the following simplifying assumptions:

a=0, f(a)=0, Df(0)=1 (identity). (2.75)

Then, we define a map g : U — R™ by g(z) = = — f(x), so that we obtain the further
simplification
Dg(0) = Df(0) — I =0. (2.76)

Lemma 2.16. Given € > 0, there exists § > 0 such that for any x,y € Rs,
9(z = g(y)| < elz —yl. (2.77)

Proof. The result that Dg(0) = 0 implies that there exists § > 0 such that for any
x € Rs, |Dg(z)| < €/n. Applying the first lemma, the proof is complete. O

Now, remember that g(z) = x — f(x). Take any =,y € Rs. Then

v—y=x—flx)+f@) = fly)+fly) -

— g(2) — gly) + f(x) - F(y). (278)



Using the Triangle Inequality we obtain

[z —yl < lg(x) —gW)| + [f (=) = f(y)| (2.79)

Using the previous lemma, we find that
1=z —yl <[f(x) = fy)l. (2.80)

We choose & such that € > 1/2, so that
|z —y| <2[f(z) = fy)l. (2.81)

This proves that f: Rs — R™ is one-to-one.
We also want to prove that f is onto. We have Df(0) = I, so det(%(O)) = 1.
We can choose ¢ such that for any = € Ry,

det <§fi (x)) 51 (2.82)
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Lemma 2.17. If y € Bs/4, than there exists a point c € Rs such that f(c) =y.

Proof. Let h: Rs — R be a map defined by h(x) =| f(z) —y [|>. The domain Ry is
compact, so h has a minimum at some point ¢ € Rjy.

Claim. The point c is an interior point. That s, ¢ € Ry.

Proof. For any = € Rs, |x| = § implies that |f(x) — f(0)] = |f(x)] > §/2

— || f(z) [[=

N

J
= || f(z) -y ||> 7 when z € Bd Ry. (2.83)
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At the origin, h(0) = f(0) —y [*=| y [?< (6/4)*, since y € Bs/4. So, h(0) < h on

Bd Rs, which means that the minimum point ¢ of h is in Rs. This ends the proof of
the claim. O

Now that we know that the minimum point ¢ occurs in the interior, we can apply
the second lemma to h to obtain

oh
—()=0, j=1,...,n. 2.84
axj(c) Oa ] ) y T ( 8)

From the definition of h,

(e)=0,i=1,....n, (2.85)



SO

Oh & of; .
—(c)=29 (c) —y,)——(c) = =1,....n. 2.
5, ;oﬂ(c) W), (©) =0 i=1....n (2.86)
Note that
det | 211 ()| #0 (2.87)
833j ’ '
so, by Cramer’s Rule,
n

Let Uy = Rs ~ f~'(Bs/4), where we have chosen V = By/y. We have shown that
f is a bijective map.

Claim. The map f~':V — U, is continuous.

Proof. Let a,b € V, and define x = f~'(a) and y = f~'(b). Then a = f(z) and
b=f(y).

Oz —y|
o=t = () — fw) = 224 (2.50)
SO |
a0 = 2177 (@)~ )] (2.90)
This shows that f~' is continuous on V' = By . O
As a last item for today’s lecture, we show the following:
Claim. The map f~' is differentiable at 0, and Df~1(0) = I.
Proof. Let k € R™ — {0} and choose k=0. We are trying to show that
-1 k) — f~40) = Df~Y0)k
f0+k) f“ﬂ(o) F7OF sk — o0, (2.91)
We simplify
SO+ E) = f7H0) = D)k fTH(K) — K (2.92)
|| k[ '
Define h = f~1(k) so that k = f(h) and |k| < 2|h|. To show that
(k) —k
% —0ask — 0, (2.93)
it suffices to show that S g
% —0ash—0. (2.94)



That is, it suffices to show that

h_‘Tf‘(h) —0as h— 0. (2.95)

But this is equal to

which goes to zero as h — 0 because f is differentiable at zero. O

The proof of the Inverse Function Theorem continues in the next lecture.





