Lecture 8

3.2 Riemann Integral of Several Variables

Last time we defined the Riemann integral for one variable, and today we generalize to many variables.

Definition 3.3. A rectangle is a subset Q of \mathbb{R}^n of the form

$$Q = [a_1, b_1] \times \dots \times [a_n, b_n], \tag{3.10}$$

where $a_i, b_i \in \mathbb{R}$.

Note that $x = (x_1, ..., x_n) \in Q \iff a_i \le x_i \le b_i$ for all i. The volume of the rectangle is

$$v(Q) = (b_1 - a_1) \cdots (b_n - a_n), \tag{3.11}$$

and the width of the rectangle is

$$width(Q) = \sup_{i} (b_i - a_i). \tag{3.12}$$

Recall (stated informally) that given $[a,b] \in \mathbb{R}$, a finite subset P of [a,b] is a partition of [a,b] if $a,b \in P$ and you can write $P = \{t_i : i = 1,\ldots,N\}$, where $t_1 = a < t_2 < \ldots < t_N = b$. An interval I belongs to P if and only if I is one of the intervals $[t_i, t_{i+1}]$.

Definition 3.4. A partition P of Q is an n-tuple (P_1, \ldots, P_n) , where each P_i is a partition of $[a_i, b_i]$.

Definition 3.5. A rectangle $R = I_1 \times \cdots \times I_n$ belongs to P if for each i, the interval I_i belongs to P_i .

Let $f: Q \to \mathbb{R}$ be a bounded function, let P be a partition of Q, and let R be a rectangle belonging to P.

We define

$$m_R f = \inf_R f = \text{g.l.b. } \{ f(x) : x \in \mathbb{R} \}$$

 $M_R f = \sup_R f = \text{l.u.b. } \{ f(x) : x \in \mathbb{R} \},$
(3.13)

from which we define the lower and upper Riemann sums,

$$L(f,P) = \sum_{R} m_{R}(f)v(R)$$

$$U(f,P) = \sum_{R} M_{R}(f)v(R).$$
(3.14)

It is evident that

$$L(f, P) \le U(f, P). \tag{3.15}$$

Now, we will take a sequence of partitions that get finer and finer, and we will define the integral to be the limit.

Let $P = (P_1, \ldots, P_n)$ and $P' = (P'_1, \ldots, P'_n)$ be partitions of Q. We say that P' refines P if $P'_i \supset P_i$ for each i.

Claim. If P' refines P, then

$$L(f, P') \ge L(f.P). \tag{3.16}$$

Proof. We let $P_j = P'_j$ for $j \neq i$, and we let $P'_i = P_i \cup \{a\}$, where $a \in [a_i, b_i]$. We can create any refinement by multiple applications of this basic refinement. If R is a rectangle belonging to P, then either

- 1. R belongs to P', or
- 2. $R = R' \cup R''$, where R', R'' belong to P'.

In the first case, the contribution of R to L(f, P') equals the contribution of R to L(f, P), so the claim holds.

In the second case,

$$m_R v(R) = m_R (v(R') + v(R''))$$
 (3.17)

and

$$m_r = \inf_{R} f \le \inf_{R'} f, \inf_{R''} f. \tag{3.18}$$

So,

$$m_R < m_{R'}, m_{R''}$$
 (3.19)

Taken altogether, this shows that

$$m_R v(R) \le m_{R'} v(R') + m_{R''} v(R'')$$
 (3.20)

Thus, R' and R'' belong to P'.

Claim. If P' refines P, then

$$U(f, P') \le U(f, P) \tag{3.21}$$

The proof is very similar to the previous proof. Combining the above two claims, we obtain the corollary

Corollary 2. If P and P' are partitions, then

$$U(f, P') \ge L(f, P) \tag{3.22}$$

Proof. Define $P'' = (P_1 \cup P'_1, \dots, P_n \cup P'_n)$. So, P'' refines P and P'. We have shown that

$$U(f, P'') \le U(f, P)$$

 $L(f, P') \le L(f, P'')$
 $L(f, P'') \le U(f, P'').$ (3.23)

Together, these show that

$$U(f,P) \ge L(f,P'). \tag{3.24}$$

With this result in mind, we define the lower and upper Riemann integrals:

$$\frac{\int_{Q} f = \sup_{P} L(f, P)}{\int_{Q} f = \inf_{P} U(f, P)}.$$
(3.25)

Clearly, we have

$$\underline{\int}_{Q} f \le \overline{\int}_{Q} f, \tag{3.26}$$

Finally, we define Riemann integrable.

Definition 3.6. A function f is Riemann integrable over Q if the lower and upper Riemann integrals coincide (are equal).

3.3 Conditions for Integrability

Our next problem is to determine under what conditions a function is (Riemann) integrable.

Let's look at a trivial case:

Claim. Let $F: Q \to \mathbb{R}$ be the constant function f(x) = c. Then f is R. integrable over Q, and

$$\int_{Q} c = cv(Q). \tag{3.27}$$

Proof. Let P be a partition, and let R be a rectangle belonging to P. We see that $m_R(f) = M_R(f) = c$, so

$$U(f,P) = \sum_{R} M_{R}(f)v(R) = c \sum_{R} v(R)$$

= $cv(Q)$. (3.28)

Similarly,

$$L(f, P) = cv(Q). (3.29)$$

Corollary 3. Let Q be a rectangle, and let $\{Q_i : i = 1, ..., N\}$ be a collection of rectangles covering Q. Then

$$v(Q) \le \sum v(Q_i). \tag{3.30}$$

Theorem 3.7. If $f: Q \to \mathbb{R}$ is continuous, then f is R. integrable over Q.

Proof. We begin with a definition

Definition 3.8. Given a partition P of Q, we define

$$\operatorname{mesh \ width}(P) = \sup_{R} \operatorname{width}(R). \tag{3.31}$$

Remember that

$$Q \text{ compact} \implies f: Q \to \mathbb{R} \text{ is uniformly continuous.}$$
 (3.32)

That is, given $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in Q$ and $|x - y| < \delta$, then $|f(x) - f(y)| < \epsilon$.

Choose a partition P of Q with mesh width less than δ . Then, for every rectangle R belonging to P and for every $x, y \in R$, we have $|x - y| < \delta$. By uniform continuity we have, $M_R(f) - m_R(f) \le \epsilon$, which is used to show that

$$U(f,P) - L(f,P) = \sum_{R} (M_R(f) - m_R(f))v(R)$$

$$\leq \epsilon \sum_{R} v(R)$$

$$\leq \epsilon v(Q).$$
(3.33)

We can take $\epsilon \to 0$, so

$$\sup_{P} L(f, P) = \inf_{P} U(f, P), \tag{3.34}$$

which shows that f is integrable.

We have shown that continuity is sufficient for integrability. However, continuity is clearly not necessary. What is the general condition for integrability? To state the answer, we need the notion of *measure zero*.

Definition 3.9. Suppose $A \subseteq \mathbb{R}^n$. The set A is of measure zero if for every $\epsilon > 0$, there exists a countable covering of A by rectangles Q_1, Q_2, Q_3, \ldots such that $\sum_i v(Q_i) < \epsilon$.

Theorem 3.10. Let $f: Q \to \mathbb{R}$ be a bounded function, and let $A \subseteq Q$ be the set of points where f is not continuous. Then f is R, integrable if and only if A is of measure zero.

Before we prove this, we make some observations about sets of measure zero:

- 1. Let $A, B \subseteq \mathbb{R}^n$ and suppose $B \subset A$. If A is of measure zero, then B is also of measure zero.
- 2. Let $A_i \subseteq \mathbb{R}^n$ for $i = 1, 2, 3, \ldots$, and suppose the A_i 's are of measure zero. Then $\cup A_i$ is also of measure zero.
- 3. Rectangles are *not* of measure zero.

We prove the second observation:

For any $\epsilon > 0$, choose coverings $Q_{i,1}, Q_{i,2}, \ldots$ of A_i such that each covering has total volume less than $\epsilon/2^i$. Then $\{Q_{i,j}\}$ is a countable covering of $\cup A_i$ of total volume

$$\sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon. \tag{3.35}$$