Lecture 9

We quickly review the definition of measure zero.
A set A C R" is of measure zero if for every € > 0, there exists a covering of A by
rectangles Q1, Q2, @3, ... such that the total volume > v(Q;) < €.

Remark. In this definition we can replace “rectangles” by “open rectangles.” To

see this, given any € > 0 let Q1,Q2,... be a cover of A with volume less than €/2.
Next, choose @} to be rectangles such that Int Q; D @Q; and v(Q}) < 2v(Q;). Then
Int Q},Int Q5,... cover A and have total volume less than e.

We also review the three properties of measure zero that we mentioned last time,
and we prove the third.

1. Let A, B C R" and suppose B C A. If A is of measure zero, then B is also of
measure Zero.

2. Let A; CR" fori=1,2,3,..., and suppose the A;’s are of measure zero. Then
UA; is also of measure zero.

3. Rectangles are not of measure zero.
We prove the third property:
Claim. If Q) is a rectangle, then () is not of measure zero.

Proof. Choose ¢ < v(Q). Suppose (Qq,Q2,... are rectangles such that the total
volume is less than e and such that Int @1, Int Q)5,... cover Q.

The set () is compact, so the H-B Theorem implies that the collection of sets
Int Qq,...,Int Qn cover @ for N sufficiently large. So,

N
QclJaes, (3.36)
i=1
which implies that
(@) <D v(Q) < e <v(Q), (3.37)
i=1
which is a contradiction. O

We then have the following simple result.
Claim. If Int A is non-empty, then A is not of measure zero.

Proof. Consider any p € Int A. There exists a 0 > 0 such that U(p,d) = {z : |[x—p| <
0} is contained in A. Then let Q = {x : |t —p| < d}. It follows that if A is of measure
zero, then () is of measure zero, by the first property. We know that @) is not of
measure zero by the third property. O]



We restate the necessary and sufficient condition for R. integrability from last
time, and we now prove the theorem.

Theorem 3.11. Let Q be a rectangle and f : QQ — R be a bounded function. Let D
be the set of points in () where f is not continuous. Then f is R. integrable if and
only if D s of measure zero.

Proof. First we show that
D is of measure zero = f is R. integrable (3.38)

Lemma 3.12. Let Q = [ay, b1] X -+ X [a,, by, and let Q*,ac =1,... N, be a covering
of Q by rectangles. Then there exists a partition P of ) such that every rectangle R
belonging to P is contained in Q% for some a.

Proof. Write out Q% = I{ x --- x I, and let

P; = (U Endpoints of [f‘) N laj, b;] U {a;,b;}. (3.39)

One can show that P; is a partition of [a;, b;], and P = (P, ..., P,) is a partition of
() with the above properties. O

Let f: @ — R be a bounded function, and let D be the set of points at which f
is discontinuous. Assume that D is of measure zero. We want to show that f is R.
integrable.

Let € > 0, and let )}, = 1,2,3,... be a collection of rectangles of total volume
less than e such that Int @}, @5, ... cover D.

If p € Q—D, we know that f is continuous at p. So, there exists a rectangle ), with
peInt @, and |f(z) — f(p)| < €/2 for all z € Q, (for example, @, = {z||z —p| <}
for some 0). Given any z,y € @), we find that |f(z) — f(y)| < e.

The rectangles Int Q,,p € Q — D along with the rectangles Int Q},7 = 1,2, ...
cover (). The set () is compact, so the H-B Theorem implies that there exists a finite
open subcover:

Qi=Int Qp,i=1,....0 IntQjj=1,.... L (3.40)

Using the lemma, there exists a partition P of ) such that every rectangle belonging
to P is contained in a Q; or a Q7.
We now show that f is R. integrable.

U(f, P) = L(f,P) = > _(Mg(f) — mr(f))v(R)

R (3.41)
+ > (M (f) = mr(f))o(R),



where each R in the first sum belongs to a );, and each R’ in the second sum belongs

to a Q.
We look at the first sum. If z,y € R C @), then |f(x) — f(y)| <e. So, Mg(f) —
mg(f) < e. It follows that

Mg(f) —mpg v(R) <e v(R
;( (f) (/)v(R) % (R) (3.42)

< 0 (Q).

We now look at the second sum. The function f : ) — R is bounded, so there
exists a number ¢ such that —¢ < f(z) < cforall x € Q. Then, Mp/(f)—mp (f) < 2¢
SO

> (Mp(f) = fr(HWER) <2¢) o(R)

R’ R’
¢
= 2c v(R')
3P, (.43
<2e) v(Q))
< QCE.Z
Substituting back into Equation 3.41, we get
U(f,P) = L(f,P) < e(v(Q) + 2c). (3.44)
So, -
/ f - / f < c(v(Q) +20), (3.45)
Q 29
because s
U(f,P)> d L(f,P) < : 3.46
(1.P)= [ g and 17, ZQf (3.16)

Letting € go to zero, we conclude that

7Qf - Z K (3.47)

which shows that f is Riemann integrable.
This concludes the proof in one direction. We do not prove the other direction. [

Corollary 4. Suppose f : Q — R is R. integrable and that f > 0 everywhere. If
fQ f =0, then f =0 except on a set of measure zero.



Proof. Let D be the set of points where f is discontinuous. The function f is R.
integrable, so D is of measure zero.

If pe Q— D, then f(p) = 0. To see this, suppose that f(p) =6 > 0. The function
f is continuous at p, so there exists a rectangle Ry centered at p such that f > nd/2
on Ry. Choose a partition P such that Ry is a rectangle belonging to P. On any
rectangle R belonging to P, f > 0, so mg(f) > 0. This shows that

L(f, P) = mg,(f)v(Ro) + Z mp(f)v(R)
R#Ro (3.48)

But we assumed that fQ f =0, so we have reached a contradiction. So f = 0 at all
points p € Q — D. H





