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Lecture 9

We quickly review the definition of measure zero.

A set A ⊆ Rn is of measure zero if for every � > 0, there exists a covering of A by


rectangles Q1, Q2, Q3, . . . such that the total volume v(Qi) < �. 

Remark. In this definition we can replace “rectangles” by “open rectangles.” To 
see this, given any � > 0 let Q1, Q2, . . . be a cover of A with volume less than �/2. 
Next, choose Qi

� to be rectangles such that Int Qi
� ⊃ Qi and v(Q�

i) < 2v(Qi). Then 
Int Q1

� , Int Q2
� , . . . cover A and have total volume less than �. 

We also review the three properties of measure zero that we mentioned last time, 
and we prove the third. 

1. Let A,B ⊆ Rn and suppose B ⊂ A. If A is of measure zero, then B is also of 
measure zero. 

2. Let Ai ⊆ Rn for i = 1, 2, 3, . . . , and suppose the Ai’s are of measure zero. Then 
∪Ai is also of measure zero. 

3. Rectangles are not of measure zero. 

We prove the third property: 

Claim. If Q is a rectangle, then Q is not of measure zero. 

Proof. Choose � < v(Q). Suppose Q1, Q2, . . . are rectangles such that the total 
volume is less than � and such that Int Q1, Int Q2, . . . cover Q. 

The set Q is compact, so the H­B Theorem implies that the collection of sets 
Int Q1, . . . , Int QN cover Q for N sufficiently large. So, 

N

 
Q ⊆ Qi, (3.36) 

i=1 

which implies that 
N� 

v(Q) ≤ v(Qi) < � < v(Q), (3.37) 
i=1 

which is a contradiction. 

We then have the following simple result. 

Claim. If Int A is non­empty, then A is not of measure zero. 

Proof. Consider any p ∈ Int A. There exists a δ > 0 such that U(p, δ) = {x : x−p <| |
δ} is contained in A. Then let Q = {x : x− p It follows that if A is of measure | | ≤ δ}. 
zero, then Q is of measure zero, by the first property. We know that Q is not of 
measure zero by the third property. 
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We restate the necessary and sufficient condition for R. integrability from last 
time, and we now prove the theorem. 

Theorem 3.11. Let Q be a rectangle and f : Q → R be a bounded function. Let D 
be the set of points in Q where f is not continuous. Then f is R. integrable if and 
only if D is of measure zero. 

Proof. First we show that 

D is of measure zero = ⇒ f is R. integrable (3.38) 

Lemma 3.12. Let Q = [a1, b1]×· · ·× [an, bn], and let Qα, α = 1, . . . , N , be a covering 
of Q by rectangles. Then there exists a partition P of Q such that every rectangle R 
belonging to P is contained in Qα for some α. 

Proof. Write out Qα = I1 
α × · · · × Iα, and let n 

 

Pj = Endpoints of Ij
α ∩ [aj, bj] ∪ {aj, bj}. (3.39) 

α 

One can show that Pj is a partition of [aj, bj], and P = (P1, . . . , Pn) is a partition of 
Q with the above properties. 

Let f : Q→ R be a bounded function, and let D be the set of points at which f 
is discontinuous. Assume that D is of measure zero. We want to show that f is R. 
integrable. 

Let � > 0, and let Qi
� , i = 1, 2, 3, . . . be a collection of rectangles of total volume 

less than � such that Int Q1
� , Q2

� , . . . cover D. 
If p ∈ Q−D, we know that f is continuous at p. So, there exists a rectangle Qp with 

p ∈ Int Qp and f(x)− f(p) < �/2 for all x ∈ Qp (for example, Qp =| | {x||x− p| ≤ δ}
for some δ). Given any x, y ∈ Qp, we find that f(x)− f(y) < �.| |

The rectangles Int Qp, p ∈ Q − D along with the rectangles Int Qi
� , i = 1, 2, . . . 

cover Q. The set Q is compact, so the H­B Theorem implies that there exists a finite 
open subcover: 

Qi ≡ Int Qpi
, i = 1, . . . , �; Int Qj

� , j = 1, . . . , �. (3.40) 

Using the lemma, there exists a partition P of Q such that every rectangle belonging 
to P is contained in a Qi or a Q�

j. 
We now show that f is R. integrable. 

U(f, P )− L(f, P ) = (MR(f)−mR(f))v(R) 
R� (3.41) 

+ (MR (f)−mR� (f))v(R�), 
R� 

2 



� � 

� � 
� 

�� � 

� 

� 

where each R in the first sum belongs to a Qi, and each R� in the second sum belongs 
to a Q�

j. 
We look at the first sum. If x, y ∈ R ⊆ Qi, then f(x)− f(y) ≤ �. So, MR(f)−| |

mR(f) ≤ �. It follows that 

(MR(f)− mR(f))v(R) ≤ � v(R) 
R R (3.42) 

≤ �v(Q). 

We now look at the second sum. The function f : Q → R is bounded, so there 
exists a number c such that −c ≤ f(x) ≤ c for all x ∈ Q. Then, MR� (f)−mR� (f) ≤ 2c 
so 

(MR (f)− fR� (f))v(R�) ≤ 2c v(R�) 
R� R� 

= 2c v(R�) 
i=1 R� ⊆Qi

� (3.43) 

≤ 2c v(Q�
i) 

i 

≤ 2c�. 

Substituting back into Equation 3.41, we get 

U(f, P )− L(f, P ) ≤ �(v(Q) + 2c). (3.44) 

So, � � 

Q 

f − 
Q 

f ≤ �(v(Q) + 2c), (3.45) 

because � � 
U(f, P ) ≥ 

Q 

f and L(f, P ) ≤ 
Q 

f. (3.46) 

Letting � go to zero, we conclude that � � 
f = f, (3.47) 

Q Q 

which shows that f is Riemann integrable. 
This concludes the proof in one direction. We do not prove the other direction. 

Corollary 4. Suppose f : Q → R is R. integrable and that f ≥ 0 everywhere. If 
f = 0, then f = 0 except on a set of measure zero. 

Q 
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Proof. Let D be the set of points where f is discontinuous. The function f is R. 
integrable, so D is of measure zero. 

If p ∈ Q− D, then f(p) = 0. To see this, suppose that f(p) = δ > 0. The function 
f is continuous at p, so there exists a rectangle R0 centered at p such that f ≥ nδ/2 
on R0. Choose a partition P such that R0 is a rectangle belonging to P . On any 
rectangle R belonging to P , f ≥ 0, so mR(f) ≥ 0. This shows that 

L(f, P ) = mR0(f)v(R0) + mR(f)v(R) 
R=R0� (3.48) 

δ 
v(R0) + 0.≥ 

2 

But we assumed that f = 0, so we have reached a contradiction. So f = 0 at all 
Q 

points p ∈ Q− D. 
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