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Lecture 1


1 Review of Topology 

1.1 Metric Spaces 

Definition 1.1. Let X be a set. Define the Cartesian product X × X = { (x, y) :

x, y ∈ X} .


Definition 1.2. Let d : X × X R be a mapping. The mapping d is a metric on
→
X if the following four conditions hold for all x, y, z ∈ X: 

(i) d(x, y) = d(y, x), 

(ii) d(x, y) ≥ 0, 

(iii) d(x, y) = 0 ⇐⇒ x = y, and 

(iv) d(x, z) ≤ d(x, y) + d(y, z). 

Given a metric d on X, the pair (X, d) is called a metric space. 

Suppose d is a metric on X and that Y ⊆ X. Then there is an automatic metric 
dY on Y defined by restricting d to the subspace Y × Y , 

dY = d Y × Y. (1.1) | 
Together with Y , the metric dY defines the automatic metric space (Y, dY ). 

1.2 Open and Closed Sets 

In this section we review some basic definitions and propositions in topology. We 
review open sets, closed sets, norms, continuity, and closure. Throughout this section, 
we let (X, d) be a metric space unless otherwise specified. 

One of the basic notions of topology is that of the open set. To define an open 
set, we first define the �­neighborhood. 

Definition 1.3. Given a point xo ∈ X, and a real number � > 0, we define 

U(xo, �) = { x ∈ X : d(x, xo) < �} . (1.2) 

We call U(xo, �) the �­neighborhood of xo in X. 

Given a subset Y ⊆ X, the �­neighborhood of xo in Y is just U(xo, �) ∩ Y . 

Definition 1.4. A subset U of X is open if for every xo U there exists a real ∈
number � > 0 such that U(xo, �) ⊆ U . 
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We make some propositions about the union and intersections of open sets. We 
omit the proofs, which are fairly straightforward. 

The following Proposition states that arbitrary unions of open sets are open. 

Proposition 1.5. Let {Uα, α ∈ I} be a collection of open sets in X, where I is just 
a labeling set that can be finite or infinite. Then, the set 

 

Uα is open. 
α∈I 

The following Corollary is an application of the above Proposition. 

Corollary 1. If Y ⊂ X and A is open in Y (w.r.t. dY ), then there exists on open 
set U in X such that U ∩ Y = A. 

Proof. The set A is open in Y . So, for any p ∈ A there exists an �p > 0 such that 
U(p, �p)∩ Y ⊆ A. We construct a set U containing A by taking the union of the sets 
U(p, �p) over all p in A, 

 

U = U(p, �p). (1.3) 
p∈A 

For every p ∈ A, we have U(p, �p)∩Y ⊆ A, which shows that U∩Y ⊆ A. Furthermore, 
the union is over all p ∈ A, so A ⊆ U , which implies that A ⊆ U ∩ Y . This shows 
that U ∩ Y = A. To conclude the proof, we see that U is open by the openness of the 
U(p, �p) and the above theorem. 

The following Proposition states that finite intersections of open sets are open. 

Proposition 1.6. Let {Ui, i = 1, . . . , N} be a finite collection of open sets in X. 
Then the set 

i=N

Ui is open. 
i=1 

cDefinition 1.7. Define the complement of A in X to be A = X − A = {x ∈ X : 
x /∈ A}. 

We use the complement to define closed sets. 

Definition 1.8. The set A is closed in X if Ac is open in X. 

1.3 Metrics on Rn 

For most of this course, we will only consider the case X = Rn or X equals certain 
subsets of Rn called manifolds, which we will define later. 

There are two interesting metrics on Rn . They are the Euclidean metric and 
the sup metric, and are defined in terms of the Euclidean norm and the sup norm, 
respectively. 
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Definition 1.9. Let x ∈ Rn, written out in component form as x = (x1, x2, . . . , xn). 
The Euclidean norm of x is 

� 2 2x� = x1 + · · ·+ xn, 

and the the sup norm of x is 
x = max |xi .| |

i 
|

From these norms we obtain the Euclidean distance function 

(1.4) x− y� 

and the sup distance function 
x− y , (1.5) | |

respectively. 
These two distance functions are related in several ways. In particular, 

n .|x− y| ≤ �x− y� ≤
√

|x− y|

These distance functions are also related by the following Proposition, which will 
sometimes come in handy. 

Proposition 1.10. A subset U of Rn is open w.r.t. the � � distance function if and 
only if it is open w.r.t. the | | distance function. 

So, these two distance functions give the same topologies of Rn . 

1.4 Continuity 

Consider two metric spaces (X, dX) and (Y, dY ), a function f : X → Y , and a point 
xo ∈ X. 

Definition 1.11. The function f is continuous at xo if for every � > 0 there exists a 
δ > 0 such that 

dX(x, xo) < δ = ⇒ dY (f(x), f(xo)) < �. (1.6) 

By definition, a function is continuous if it is continuous at all points in its domain. 

Definition 1.12. The function f is continuous if f is continuous at every point 
xo ∈ X. 

There is an alternative formulation of continuity that we present here as a theorem. 

Theorem 1.13. The function f is continuous if and only if for every open subset U 
of Y , the pre­image f−1(U) is open in X. 

Continuous functions can often be combined to construct other continuous func­
tions. For example, if f, g : X R are continuous functions, then f + g and fg are →
continuous functions. 
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1.5 Limit Points and Closure 

As usual, let (X, d) be a metric space. 

Definition 1.14. Suppose that A ⊆ X. The point xo ∈ X is a limit point of A if for 
every �­neighborhood U(xo, �) of xo, the set U(xo, �) is an infinite set. 

¯Definition 1.15. The closure of A, denoted by A, is the union of A and the set of 
limit points of A, 

Ā = xo ∈ X : xo is a limit point of A}. (1.7) A ∪ {

Now we define the interior, exterior, and the boundary of a set in terms of open 
csets. In the following, we denote the complement of A by A = X − A. 

Definition 1.16. The set 
Int A ≡ (Āc)c (1.8) 

is called the interior of A. 

It follows that 

x ∈ Int A ⇐⇒ ∃� > 0 such that U(x, �) ⊂ A. (1.9) 

Note that the interior of A is open.

We define the exterior of a set in terms of the interior of the set.


cDefinition 1.17. The exterior of A is defined to be Ext A ≡ Int A . 

The boundary of a set is the collection of all points not in the interior or exterior. 

Definition 1.18. The boundary of A is defined to be Bd A ≡ X−((Ext A)∪(Int A)). 

Always, we have X = Int A ∪ Ext A ∪ Bd A. 

6




Lecture 2


1.6 Compactness 

As usual, throughout this section we let (X, d) be a metric space. We also remind 
you from last lecture we defined the open set 

U(xo, λ) = {x ∈ X : d(x, xo) < λ}. (1.10) 

Remark. If U(xo, λ) ⊆ U(x1, λ1), then λ1 > d(xo, x1). 

Remark. If Ai ⊆ U(xo, λi) for i = 1, 2, then A1 ∪ A2 ⊆ U(xo, λ1 + λ2). 

Before we define compactness, we first define the notions of boundedness and 
covering. 

Definition 1.19. A subset A of X is bounded if A ⊆ U(xo, λ) for some λ. 

Definition 1.20. Let A ⊆ X. A collection of subsets {Uα ⊆ X,α ∈ I} is a cover of 
A if 

 

A ⊂ Uα. 
α∈I 

Now we turn to the notion of compactness. First, we only consider compact sets 
as subsets of Rn . 

For any subset A ⊆ Rn , 

A is compact ⇐⇒ A is closed and bounded. 

The above statement holds true for Rn but not for general metric spaces. To 
motivate the definition of compactness for the general case, we give the Heine­Borel 
Theorem. 

Heine­Borel (H­B) Theorem. Let A ⊆ Rn be compact and let {Uα, α ∈ I} be a 
cover of A by open sets. Then a finite number of Uα’s already cover A. 

The property that a finite number of the Uα’s cover A is called the Heine­Borel 
(H­B) property. So, the H­B Theorem can be restated as follows: If A is compact in 
Rn, then A has the H­B property. 

Sketch of Proof. First, we check the H­B Theorem for some simple compact subsets 
of Rn . Consider rectangles Q = I1 × · · · × In ⊂ Rn, where Ik = [ak, bk] for each k. 
Starting with one dimension, it can by shown by induction that these rectangles have 
the H­B property. 

Too prove the H­B theorem for general compact subsets, consider any closed and 
bounded (and therefore compact) subset A of Rn . Since A is bounded, there exists a 
rectangle Q such that A ⊆ Q. Suppose that the collection of subsets {Uα, α ∈ I} is 
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an open cover of A. Then, define Uo = Rn −A and include Uo in the open cover. The 
rectangle Q has the H­B property and is covered by this new cover, so there exists 
a finite subcover covering Q. Furthermore, the rectangle Q contains A, so the finite 
subcover also covers A, proving the H­B Theorem for general compact subsets. 

The following theorem further motivates the general definition for compactness. 

Theorem 1.21. If A ⊆ Rn has the H­B property, then A is compact. 

Sketch of Proof. We need to show that the H­B property implies A is bounded (which 
we leave as an exercise) and closed (which we prove here). 

To show that A is closed, it is sufficient to show that Ac is open. Take any xo ∈ A , 
and define 

CN = {x ∈ Rn : d(x, xo) ≤ 1/N}, (1.11) 

and 
UN = Cc 

N . (1.12) 

Then, � 
CN = {xo} (1.13) 

and 

 
RnUN = − {xo}. (1.14) 

The UN ’s cover A, so the H­B Theorem implies that there is a finite subcover 
{UN1 , . . . , UNk

} of A. We can take N1 < N2 < < Nk, so that A ⊆ UNk
. By· · · 

ctaking the complement, it follows that CNk 
⊆ A . But U(xo, 1/Nk) ⊆ CNk

, so xo 
c c cis contained in an open subset of A . The above holds for any xo ∈ A , so A is 

open. 

Let us consider the above theorem for arbitrary metric space (X, d) and A ⊆ X. 

Theorem 1.22. If A ⊆ X has the H­B property, then A is closed and bounded. 

Sketch of Proof. The proof is basically the same as for the previous theorem. 

Unfortunately, the converse is not always true. Finally, we come to our general 
definition of compactness. 

Definition 1.23. A subset A ⊆ X is compact if it has the H­B property. 

Compact sets have many useful properties, some of which we list here in the 
theorems that follow. 

Theorem 1.24. Let (X, dX) and (Y, dY ) be metric spaces, and let f : X Y be a →
continuous map. If A is a compact subset of X, then f(A) is a compact subset of Y. 
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Proof. Let {Uα, α ∈ I} be an open covering of f(A). Each pre­image f−1(Uα) is 
open in X, so {f−1(Uα) : α ∈ I} is an open covering of A. The H­B Theorem says 
that there is a finite subcover {f−1(Uαi

) : 1 ≤ i ≤ N}. It follows that the collection 
{Uαi 

: 1 ≤ i ≤ N} covers f(A), so f(A) is compact. 

A special case of the above theorem proves the following theorem. 

Theorem 1.25. Let A	 be a compact subset of X and f : X R be a continuous →
map. Then f has a maximum point on A. 

Proof. By the above theorem, f(A) is compact, which implies that f(a) is closed and 
and bounded. Let a = l.u.b. of f(a). The point a is in f(A) because f(A) is closed, 
so there exists an xo ∈ A such that f(xo) = a. 

Another useful property of compact sets involves the notion of uniform continuity. 

Definition 1.26. Let f	 : X R be a continuous function, and let A be a subset of →
X. The map f is uniformly continuous on A if for every � > 0, there exists δ > 0 
such	that 

d(x, y) < δ = ⇒ |f(x)− f(y) < �, | 

for all x, y ∈ A. 

Theorem 1.27. If f : X → Y is continuous and A is a compact subset of X, then 
f is uniformly continuous on A. 

Proof. Let p ∈ A. There exists a δp > 0 such that f(x) − f(p) < �/2 for all | |
x ∈ U(p, δp). Now, consider the collection of sets {U(p, δp/2) : p ∈ A}, which is an 
open cover of A. The H­B Theorem says that there is a finite subcover {U(pi, δpi

/2) : 
1 ≤ i ≤ N}. Choose δ ≤ min δpi

/2. The following claim finishes the proof. 

Claim. If d(x, y) < δ, then f(x)− f(y) < �.| | 

Proof. Given x, choose pi such that x ∈ U(pi, δpi
/2). So, d(pi, x) < δpi

/2 and d(x, y) < 
δ < δpi

/2. By the triangle inequality we conclude that d(pi, y) < δpi
. This shows that 

x, y ∈ U(pi, δpi
), which implies that f(x) − f(pi) < �/2 and f(y) − f(pi) < �/2.| | | |

Finally, by the triangle inequality, f(x)− f(y) < �, which proves our claim. | | 

1.7 Connectedness 

As usual, let (X, d) be a metric space. 

Definition 1.28. The metric space (X, d) is connected if it is impossible to write X 
as a disjoint union X = U1 ∪ U2 of non­empty open sets U1 and U2. 
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Note that disjoint simply means that U1 ∩ U2 = φ, where φ is the empty set. 
A few simple examples of connected spaces are R, Rn, and I = [a, b]. The following 

theorem shows that a connected space gets mapped to a connected subspace by a 
continuous function. 

Theorem 1.29. Given metric spaces (X, dX) and (Y, dY ), and a continuous map 
f : X Y , it follows that → 

X is connected = ⇒ f(X) is connected. 

Proof. Suppose f(X) can be written as a union of open sets f(X) = U1 ∪ U2 such 
that U1 ∩ U2 = φ. Then X = f−1(U1)∪ f−1(U2) is a disjoint union of open sets. This 
contradicts that X is connected. 

The intermediate­value theorem follows as a special case of the above theorem. 

Intermediate­value Theorem. Let (X, d) be connected and f : X R be a con­→
tinuous map. If a, b ∈ f(X) and a < r < b, then r ∈ f(X). 

Proof. Suppose r /∈ f(X). Let A = (−∞, r) and B = (r,∞). Then X = f−1(A) ∪
f−1(B) is a disjoint union of open sets, a contradiction. 

10




Lecture 3


2 Differentiation 

2.1 Differentiation in n dimensions 

We are setting out to generalize to n dimensions the notion of differentiation in one­
dimensional calculus. We begin with a review of elementary one­dimensional calculus. 

Let I ⊆ R be an open interval, let f : I → R be a map, and let a ∈ I. 

Definition 2.1. The derivative of f at a is 

f �(a) = lim 
f(a+ t)− f(a) 

, (2.1) 
t 0 t→

provided that the limit exists. If the limit exists, then f is differentiable at a. 

There are half a dozen or so possible reasonable generalizations of the notion 
of derivative to higher dimensions. One candidate generalization which you have 
probably already encountered is the directional derivative. 

Definition 2.2. Given an open set U in Rn, a map f : U → Rm, a point a ∈ U , and 
a point u ∈ Rn, the directional derivative of f in the direction of u at a is 

Duf(a) = lim 
f(a+ tu)− f(a) 

, (2.2) 
t 0 t→

provided that the limit exists. 

In particular, we can calculate the directional derivatives in the direction of the 
standard basis vectors e1, . . . , en of Rn, where 

e1 = (1, 0, . . . , 0), (2.3) 

e2 = (0, 1, 0, . . . , 0), (2.4) 
. . . (2.5) 

en = (0, . . . , 0, 1). (2.6) 

Notation. The directional derivative in the direction of a standard basis vector ei of 
Rn is denoted by 

∂ 
Dif(a) = Dei

f(a) = f(a). (2.7) 
∂xi 

We now try to answer the following question: What is an adequate definition of 
differentiability at a point a for a function f : U Rm?→ 
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∂f •	 Guess 1: Require that 
∂xi 

(a) exists. 

However, this requirement is inadequate. Consider the function defined by 

0, if (x1, x2) lies on the x1­axis or the x2­axis,
f(x1, x2) =	 (2.8) 

1, otherwise.


Then, both

∂f ∂f 

(0) = 0 and (0) = 0,	 (2.9) 
∂x1 ∂x2


but the function f is not differentiable at (0, 0) along any other direction.


•	 Guess 2: Require that all directional derivatives exist at a. 

Unfortunately, this requirement is still inadequate. For example (from Munkres 
chapter 5), consider the function f : R2 R defined by → 

2xy
x2+y4 

, (x, y) = (0, 0)
f(x, y) = 

�	
(2.10) 

0, x = y = 0.


Claim. The directional derivative Duf(0) exists for all u.


Proof. Let u = (h, k). Then


f(tu)− f(0) f(tu)

lim = lim 
t	 0 t t 0→	 → � t � 

t3hk2 1 
= lim (2.11) t	 0 t2h2 + t4k4 t→

0, h = 0 
= 

k2/h, h = 0. 

So the limit exists for every u. 

However, the function is a non­zero constant on a parabola passing through the 
1origin: f(t2, t) = t

4 

= 
2
, except at the origin where f(0, 0) = 0. The function f

2t4 

is discontinuous at the origin despite the existence of all directional derivatives. 

•	 Guess 3. This guess will turn out to be correct. 

Remember than in one­dimensional calculus we defined 

f �(a) = lim 
f(a + t)− f(a) 

,	 (2.12) 
t	 0 t→

for a function f : I → R and a point a ∈ I. Now consider the function 
λ : R R defined by → 

λ(t) = f �(a)t.	 (2.13) 

12 



Then, 

lim 
f(a + t)− f(a)− λ(t) 

= lim 
f(a + t)− f(a) �(a) 

t 0 t t 0 t 
− f

(2.14) → →

= 0. 

So, λ(t) ≈ f(a + t)− f(a) when t is small.


Now we generalize to n dimensions.


Definition 2.3. Given an open subset U of Rn, a map f : U Rm, and a
→
point a ∈ U , the function f is differentiable at a if there exists a linear mapping 
B : Rn → Rm such that for every h ∈ Rn ,− {0}

f(a + h)− f(a)−Bh 
0 as h 0. (2.15) 

|h| 
→ →


That is, f(a + h)− f(a) ≈ Bh when h is small.


Theorem 2.4. If f is differentiable at a, then for every u the directional derivative 
of f in the direction of u at a exists. 

Proof. The function f is differentiable at a, so 

f(a + tu)− f(a)−B(tu) 
0 as t 0. (2.16) 

|tu| 
→ →

Furthermore, 

f(a + tu)− f(a)−B(tu) t f(a + tu)− f(a)−B(tu) 
= 

tu| t| |tu| � � 
t 1 f(a + tu)− f(a) −Bu 

(2.17) 
= 

t u t| | | |
0,→

as t → 0, so 
f(a + tu

t 

)− f(a) → Bu as t → 0. (2.18) 

Furthermore, the linear map B is unique, so the following definition is well­defined. 

Definition 2.5. The derivative of f at a is Df(a) = B, where B is the linear map 
defined above. 

Note that Df(a) : Rn Rm is a linear map. →

13 
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Theorem 2.6. If f is differentiable at a, then f is continuous at a.


Sketch of Proof. Note that for h �= 0 in Rn , 

f(a+ h)− f(a)− Bh 
|h| 

→ 0 as h→ 0 (2.19) 

implies that 
f(a+ h)− f(a)− Bh→ 0 as h→ 0. (2.20) 

From this you can conclude that f is continuous at a. 

Remark. Let L : Rn � n 
→ Rm be a linear map and a ∈ Rn . The point a can be written 

as a sum a = j=1 ajej = (a1, . . . , an). The point La can be written as the sum 
La = ajLej, and L can be written out in components as L = (L1, . . . , Lm), where 
each Lj : Rn R is a linear map. Then Lej = (L1, ej, . . . , Lmej), and Liej = �i,j .→
The numbers �i,j form an n× n matrix denoted by [�i,j ]. 

Remark. Let U ⊆ Rn, and let f1 : Rn Rm1 and f2 : Rn Rm2 be differentiable → 
maps. Let m = m1 + m2, so that Rm1

→
× Rm2 = Rm . Now, construct a function 

f : Rn Rm defined in component form by f = (f1, f2). The derivative of f at a is→ 

Df(a) = (Df1(a), Df2(a)). (2.21) 

Remark. Let f : U Rm be a map. The action of f on input x written out in →
component form is f(x) = (f1(x), . . . , fm(x)). So, the map can be represented in 
component form as f = (f1, . . . , fm), where each fi as a map of the form fi : U R.→
The derivative of f acting on the standard basis vector ej is 

Df(a)ej = (Df1(a)ej, . . . , Dfm(a)ej) 

∂f1 ∂fm (2.22) 
= ( (a), . . . , (a)). 

∂xj ∂xj 

So, the derivative (Df)(a) can be represented by an m× n matrix 

(Df)(a) ∼ Jf (a) = 
∂fi 

(a) (2.23) = 
∂xj 

called the Jacobian matrix of f at a, which you probably recognize. 
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Lecture 4


2.2 Conditions for Differentiability 

In this lecture we will discuss conditions that guarantee differentiability. First, we 
begin with a review of important results from last lecture. 

Let U be an open subset of Rn, let f : U → Rn be a map, and let a ∈ U . 
We defined f to be differentiable at a if there exists a linear map B : Rn Rm 

such that for h ∈ Rn 

→ 
− {0}, 

f(a+ h)− f(a)−Bh 
0 as h 0. (2.24) 

|h| 
→ → 

If such a B exists, then it is unique and B = Df(a). The matrix representing B is 
∂fithe Jacobian matrix Jf (a) = 
∂xj 

(a) , where f = (f1, . . . , fm). 

Note that the mere existence of all of the partial derivatives in the Jacobian matrix 
does not guarantee differentiability. 

Now we discuss conditions that guarantee differentiability. 

∂fiTheorem 2.7. Suppose that all of the partial derivatives 
∂xj 

in the Jacobian matrix 

exist at all points x ∈ U , and that all of the partial derivatives are continuous at 
x = a. Then f is differentiable at a. 

Sketch of Proof. This theorem is very elegantly proved in Munkres, so we will simply 
give the general ideas behind the proof here. 

First, we look at the case n = 2,m = 1. The main ingredient in the proof is the 
Mean Value Theorem from 1­D calculus, which we state here without proof. 

Mean Value Theorem. Given an interval [a, b] ⊆ R and a map φ : [a, b] R, if φ→
is continuous on [a, b] and differentiable on (a, b), then there exists a point c ∈ (a, b) 
such that φ(b)− φ(a) = φ�(c)(b− a). 

Now we continue with the proof. Let f be a map f : U → R, where U ⊆ R2 . So, 
f is a function of two variables f = f(x1, x2). Consider a point a = (a1, a2) ∈ U and 
any point h ∈ R2 −{0} “close” to zero, where by close we mean a+ h ∈ U . We want 
to compute f(a+ h)− f(a). 

f(a+ h)− f(a) = f(a1 + h1, a2 + h2)− f(a1, a2) 

= f(a1 + h1, a2 + h2)− f(a1, a2 + h2) (2.25) 

+ f(a1, a2 + h2)− f(a1, a2). 

Thinking of the first two terms as functions of the first argument only, and thinking 
of the last two terms as functions of the second term only, and applying the Mean 
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Value Theorem to each pair of terms, we obtain 

∂f 
f(a + h)− f(a) = (c1, a2 + h2)h1

∂x1 (2.26) 
∂f 

+ (a1, d2)h2,
∂x2 

where a1 < c1 < a1 + h1 and a2 < d2 < a2 + h2. This can be rewritten as 

∂f ∂f 
f(a + h)− f(a) = (c)h1 + (d)h2, (2.27) 

∂x1 ∂x2 

where c = (c1, a2 + h2) and d = (a1, d2). 
We want to show that (f(a + h) − f(a) − Df(a)h)/ h 0 as h → 0, where | | → 

Using our previously derived expression for f(a+h)−f(a),∂f Df(a) = 
∂x1 

(a), ∂f (a)
∂x2 

. 

we find that 

∂f ∂f 
f(a + h)− f(a)− Df(a)h = f(a + h)− f(a)− (a)h1 − (a)h2

∂x1 ∂x2 

∂f ∂f ∂f ∂f 
= 

∂x1 

(c)− 
∂x1 

(a) h1 + 
∂x2 

(d)− 
∂x2 

(a) h2. 

(2.28) 

We can use the sup norm to show that 

|
∂f ∂f ∂f ∂f 
( (d)− (a)
∂x2 ∂x2 

f(a+h)−f(a)−Df(a)h| (c)− (a)
∂x1 

h1|
+ h2 , (2.29) | ≤ | |
∂x1 

from which it follows that 

(a)
∂x1 

f(a + h)− f(a)− Df(a)h
 ∂f ∂f ∂f ∂f 
( (d)− (a)
∂x2 ∂x2 

| | ≤ 
∂x1 

(c)−
 ,
 (2.30)
+ 
h| | 

where we used the fact that |h| = max( h1 , h2 ).| | | |
Notice that as h → 0, both c → a and d → a, as can be easily seen using the 

following diagram. This means that the r.h.s. of Equation (2.30) goes to zero as h 

goes to zero, because the partial derivatives are continuous. It follows that the l.h.s. 
goes to zero, which completes our proof. 

The proof in n dimensions is similar to the above proof, but the details are harder 
to follow. 
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We now introduce a useful class of functions. 

Definition 2.8. Given U ⊆ Rn and f : U R, we define →

∂f 
(U) ⇐⇒ 

∂xi 
, i = 1, . . . , n exist and are continuous at all points x ∈ U.f ∈ C1

(2.31) 
Similarly, we define 

∂f 
(U) ⇐ 1(U), i = a, . . . , n. (2.32) f ∈ C2 ⇒ 

∂xi 
∈ C

∂f 
(U) ⇐⇒ 

∂xi 
∈ Ck−1(U), i = a, . . . , n. (2.33) f ∈ Ck

k(U)∀k. (2.34) f ∈ C∞(U) ⇐⇒ f ∈ C

If f is multiply differentiable, then you can perform higher order mixed partial 
derivatives. 

One of the fundamental theorems of calculus is that the order of the partial deriva­
tives can be taken in any order. For example, 

∂ ∂ ∂ ∂ ∂2f 
= (2.35) 

∂xi ∂xj ∂xj ∂xi 
≡ 
∂xi∂xj 

Let’s do the proof for this case. Let U ⊆ R2 and f = f(x1, x2). We prove the following 
claim: 

Claim. � � � � 
∂ ∂ ∂ ∂ 

= . (2.36) 
∂xi ∂xj ∂xj ∂xi 

Proof. Take a ∈ U written in components as a = (a1, a2), and take h = (h1, h2) ∈
R2 − {0} such that a+ h ∈ U . That is, take h ≈ 0. 

Define 

Δ(h) = f(a1 + h1, a2 + h2)− f(a1, a2 + h2)− f(a1 + h1, a2) + f(a1, a2), (2.37) 

and define 
φ(s) = f(a1 + h1, s)− f(a1, s), (2.38) 

where a2 ≤ s ≤ a2 + h2. We find that 

Δ(h) = φ(a2 + h2)− φ(a2) 
(2.39) 

= φ�(c2)h2, a2 < c2 < a2 + h2, 
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by the Mean Value Theorem. Writing out φ� using partial derivatives of f , and using 
the Mean Value Theorem again, we find 

∂f ∂f 
Δ(h) = (a1 + h1, c2)− (a1, c2) h2

∂x2 ∂x1 

∂ ∂f 
= (c1, c2)h1 h2, a1 < c1 < a1 + h1

∂x1 ∂x2� � �� (2.40) 
∂ ∂ 

= f (c)h1h2
∂x1 ∂x2 

∂ ∂ 
= f (d)h1h2,

∂x2 ∂x1 

where we obtained the last line by symmetry. This shows that � � � � 
∂ ∂f ∂ ∂f 

∂x1 ∂x2 

(c) = 
∂x2 ∂x1 

(d). (2.41) 

As h → 0, c → a and d → a, so � � � � 
∂ ∂f ∂ ∂f 

∂x1 ∂x2 

(a) = 
∂x2 ∂x1 

(a), (2.42) 

for any a ∈ U . 

The above argument can be iterated for f ∈ C3 3(4), etc. (U), f ∈ C

18
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Lecture 5


2.3 Chain Rule 

Let U and v be open sets in Rn . Consider maps f : U → V and g : V Rk .→
Choose a ∈ U , and let b = f(a). The composition g ◦ f : U Rk is defined by →
(g ◦ f)(x) = g(f(x)). 

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then g ◦ f is 
differentiable at a, and the derivative is 

(Dg ◦ f)(a) = (Dg)(b) ◦Df(a). (2.43) 

Proof. This proof follows the proof in Munkres by breaking the proof into steps. 

• Step 1: Let h ∈ Rn − {0} and h=̇0, by which we mean that h is very close to 
zero. Consider Δ(h) = f(a + h)− f(a), which is continuous, and define 

F (h) = 
f(a + h)− f(a)−Df(a)h 

. (2.44) 
a| |


Then f is differentiable at a if and only if F (h) → 0 as h 0.
→

F (h) =
Δ(h)−Df(a)h

, (2.45) 
h| | 

so 
Δ(h) = Df(a)h+ |h|F (h). (2.46) 

Lemma 2.10. 
Δ(h) 

is bounded. (2.47) 
h| | 

Proof. Define 

,
 (2.48)

∂f 

Df(a) (a)| = sup |
∂xii 

and note that 
∂f 

(a) = Df(a)ei, (2.49) 
∂xi 

ei are the standard basis vectors of Rnwhere the 
h = hiei. So, we can write 

. If h = (h1, . . . , hn), then 

∂f 
Df(a)h = hiDf(a)ei = hi (a). (2.50) 

∂xi 
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It follows that


m

Df(a)h hi≤ 
∂f 

(a)| | 
∂xi (2.51) i=1 

.≤ m|h||Df(a)|

By Equation 2.46, 
Δ(h)| ≤ m|h||Df(a)| + h F (h), (2.52) | | |

so

Δ(h)|
|
|h|

≤ m|Df(a)| + F (h). (2.53) 

• Step 2: Remember that b = f(a), g : V → Rk, and b ∈ V . Let k =̇0. This 
means that k ∈ Rn − {0} and that k is close to zero. Define 

G(k) = 
g(b+ k)− g(b)− (Dg)(b)k

, (2.54) 
k| | 

so that 
g(b+ k)− g(b) = Dg(b)k + k G(k). (2.55) | |


We proceed to show that g ◦ f is differentiable at a.


f(a + h)− g ◦ f(a) = g(f(a + h)) − g(f(a))g ◦ 
(2.56) 

= g(b+ Δ(h)) − g(b), 

where f(a) = b and f(a + h) = f(a) + Δ(h) = b + Δ(h). Using Equation 2.55 
we see that the above expression equals 

Dg(b)Δ(h) + |Δ(h) G(Δ(h)). (2.57) |

Substituting in from Equation 2.46, we obtain 

f(a + h)− g ◦ f(a) = . . . g ◦ 

= Dg(b)(Df(a)h+ |h|F (h)) + . . . 

= Dg(b) ◦ Df(a)h+ h Dg(b)F (h) + Δ(h) G(Δ(h))| | | |
(2.58) 

This shows that


g ◦ f(a + h)− g ◦ f(a)− Dg(b) ◦ Df(a)h 
= Dg(b)F (h) + 

Δ(h)

G(Δ(h)). 

h h| | | | 
(2.59) 

We see in the above equation that g ◦ f is differentiable at a if and only if the 
l.h.s. goes to zero as h → 0. It suffices to show that the r.h.s. goes to zero 
as h → 0, which it does: F (h) → 0 as h 0 because f is differentiable at a;→
G(Δ(h)) → 0 because g is differentiable at b; and Δ(h)/ h is bounded. | | 

20 



� � 

We consider the same maps g and f as above, and we write out f in component 
form as f = (f1, . . . , fn) where each fi : U → R. We say that f is a Cr map if each 

r(U). We associate Df(x) with the matrix fi ∈ C

∂fi
Df(x) ∼ 

∂xj 
(x) . (2.60) 

By definition, f is Cr (that is to say f ∈ Cr(U)) if and only if Df is Cr−1 . 

rTheorem 2.11. If f : U → V ⊆ Rn is a C map and g : V → Rp is a Cr map, then 
rg ◦ f : U → Rp is a C map. 

Proof. We only prove the case r = 1 and leave the general case, which is inductive, 
to the student. 

• Case r = 1: � � 

Dg ◦ f(x) = Dg(f(x)) ◦Df(x) ∼ 
∂gi 
∂xj 

f(x) . (2.61) 

The map g is C1, which implies that ∂gi/∂xj is continuous. Also, � � 

Df(x) ∼ 
∂fi 
∂xj 

(2.62) 

is continuous. It follows that Dg ◦ f(x) is continuous. Hence, g ◦ f is C1 . 

2.4 The Mean­value Theorem in n Dimensions 

Theorem 2.12. Let U be an open subset of Rn and f : U → R a C1 map. For a ∈ U , 
h ∈ Rn, and h =̇0, 

f(a + h)− f(a) = Df(c)h, (2.63) 

where c is a point on the line segment a + th, 0 ≤ t ≤ 1, joining a to a + h. 

Proof. Define a map φ : [0, 1] → R by φ(t) = f(a + th). The Mean Value Theorem 
implies that φ(1) − φ(0) = φ�(c) = (Df)(c)h, where 0 < c < 1. In the last step we 
used the chain rule. 
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2.5 Inverse Function Theorem 

Let U and V be open sets in Rn, and let f : U → V be a C1 map. Suppose there 
exists a map g : V → U that is the inverse map of f (which is also C1). That is, 
g(f(x)) = x, or equivalently g ◦ f equals the identity map. 

Using the chain rule, if a ∈ U and b = f(a), then 

(Dg)(b) = the inverse of Df(a). (2.64) 

That is, Dg(b) ◦ Df(a) equals the identity map. So, 

Dg(b) = (Df(a))−1 (2.65) 

However, this is not a trivial matter, since we do not know if the inverse exists. That 
is what the inverse function theorem is for: if Df(a) is invertible, then g exists for 
some neighborhood of a in U and some neighborhood of f(a) in V . We state this 
more precisely in the following lecture. 
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Lecture 6

We begin with a review of some earlier definitions. 
Let δ > 0 and a ∈ Rn . 

Euclidean ball: Bδ(a) = {x ∈ Rn :� x − a �< δ} (2.66) 

Supremum ball: Rδ(a) = {x ∈ Rn : x − a < δ}| | 
(2.67) 

= I1 × · · · × In, Ij = (aj − δ, aj + δ). 

Note that the supremum ball is actually a rectangle. Clearly, Bδ(a) ⊆ Rδ(a). We use 
the notation Bδ = Bδ(0) and Rδ = Rδ(0). 

Continuing with our review, given U open in Rn, a map f : U Rk, and a point → 
a ∈ U , we defined the derivate Df(a) : Rn Rk which we associated with the matrix → 

∂fi
Df(a) ∼ 

∂xj 
(a) , (2.68) 

and we define 
∂fi 
∂xj 

(a)
 .
 (2.69) |Df(a) = sup | 
i,j 

Lastly, we define U ⊆ Rn to be convex if 

a, b ∈ U = ⇒ (1 − t)a + tb ∈ U for all 0 ≤ t ≤ 1. (2.70) 

Before we state and prove the Inverse Function Theorem, we give the following 
definition. 

Definition 2.13. Let U and V be open sets in Rn and f : U → V a Cr map. The 
map f is is a Cr diffeomorphism if it is bijective and f−1 : V → U is also Cr . 

Inverse Function Theorem. Let U be an open set in Rn , f : U → Rn a Cr map, 
and a ∈ U . If Df(a) : Rn Rn is bijective, then there exists a neighborhood U1 of a→
in U and a neighborhood V of f(a) in Rn such that F U1 is a Cr diffeomorphism of |
U1 at V . 

Proof. To prove this we need some elementary multi­variable calculus results, which 
we provide with the following lemmas. 

Lemma 2.14. Let U be open in Rn and F : U → Rk be a C1 mapping. Also assume 
that U is convex. Suppose that Df(a) ≤ c for all A ∈ U . Then, for all x, y ∈ U ,| | 

f(x)− f(y) ≤ nc x − y . (2.71) | | | |
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Proof. Consider any x, y ∈ U . The Mean Value Theorem says that for every i there 
exists a point c on the line joining x to y such that 

∂fi
fi(x)− fi(y) (d)(xj − yj). (2.72) = 

∂xjj 

It follows that 

∂fi
fi(x)− fi(y) (d)| | ≤
 xj − yj| |

∂xjj 

c xj − yj≤ | |
j 

≤ nc x− y| | 

This is true for each i, so f(x)− f(y) ≤ nc x− y| | | | 

(2.73)


Lemma 2.15. Let U be open in Rn and f : U → R a C1 map. Suppose f takes a 
minimum value at some point b ∈ U . Then 

∂f 
(b) = 0, i = 1, . . . , n. (2.74) 

∂xi 

Proof. We reduce to the one­variable result. Let b = (b1, . . . , bn) and let φ(t) = 
f(b1, . . . , bi−1, t, bi+1, . . . , bn), which is C1 near b1 and has a minimum at bi. We know 
from one­variable calculus that this implies that ∂φ = 0.

∂t 
(bi)

In our proof of the Inverse Function Theorem, we want to show that f is locally 
a diffeomorphism at a. We will make the following simplifying assumptions: 

a = 0, f(a) = 0, Df(0) = I (identity). (2.75) 

Then, we define a map g : U → Rn by g(x) = x− f(x), so that we obtain the further 
simplification 

Dg(0) = Df(0)− I = 0. (2.76) 

Lemma 2.16. Given � > 0, there exists δ > 0 such that for any x, y ∈ Rδ, 

g(x− g(y) < � x− y . (2.77) | | | |

Proof. The result that Dg(0) = 0 implies that there exists δ > 0 such that for any 
x ∈ Rδ, Dg(x) ≤ �/n. Applying the first lemma, the proof is complete. | |


Now, remember that g(x) = x− f(x). Take any x, y ∈ Rδ. Then


x− y = x− f(x) + f(x)− f(y) + f(y)− y 
(2.78) 

= g(x)− g(y) + f(x)− f(y). 
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Using the Triangle Inequality we obtain 

x− y g(x)− g(y) + f(x)− f(y) (2.79) | | ≤ | | | | 

Using the previous lemma, we find that 

(1 − �) x− y f(x)− f(y) . (2.80) | | ≤ | |

We choose δ such that � > 1/2, so that 

x− y f(x)− f(y) . (2.81) | | ≤ 2| |

This proves that f : Rδ → Rn is one­to­one. 
We also want to prove that f is onto. We have Df(0) = I, so det( ∂fi (0)) = 1.

∂xj 

We can choose δ such that for any x ∈ Rδ, 

∂fi 1 
det (x) > . (2.82) 

∂xj 2 

Lemma 2.17. If y ∈ Bδ/4, than there exists a point c ∈ Rδ such that f(c) = y. 

2¯Proof. Let h : Rδ → R be a map defined by h(x) =� f(x)− y � . The domain R̄δ is 
¯compact, so h has a minimum at some point c ∈ Rδ. 

Claim. The point c is an interior point. That is, c ∈ Rδ. 

¯Proof. For any x ∈ Rδ, x = δ implies that f(x)− f(0) = f(x) ≥ δ/2| | | | | | 

δ 
=⇒ � f(x) �≥ 

2 
δ 
, when x ∈ Bd Rδ. (2.83) =⇒ � f(x)− y �≥ 

4� �2
δ 

= ⇒ h(x) ≥ . 
4 

At the origin, h(0) =� f(0) − y �2= 2< (δ/4)2, since y ∈ Bδ/4. So, h(0) ≤ h on� y �
Bd Rδ, which means that the minimum point c of h is in Rδ. This ends the proof of 
the claim. 

Now that we know that the minimum point c occurs in the interior, we can apply 
the second lemma to h to obtain 

∂h 
(c) = 0, j = 1, . . . , n. (2.84) 

∂xj 

From the definition of h, 

n� ∂fi
h(x) = (fi(c)− yi)

∂xj 
(c) = 0, i = 1, . . . , n, (2.85) 

i=1 
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so 
n

∂h � ∂fi 
∂xj 

(c) = 2 (fi(c)− yi)
∂xj 

(c) = 0, i = 1, . . . , n. (2.86) 
i−1 

Note that � � 
∂fi

det (c) = 0, (2.87) 
∂xj 

�

so, by Cramer’s Rule, 
fi(c)− yi = 0, i = 1, . . . , n. (2.88) 

Let U1 = Rδ ∼ f−1(Bδ/4), where we have chosen V = Bδ/4. We have shown that 
f is a bijective map. 

Claim. The map f−1 : V U1 is continuous. →

Proof. Let a, b ∈ V , and define x = f−1(a) and y = f−1(b). Then a = f(x) and 
b = f(y). 

= f(x)− f(y)
∂ x− y|

, (2.89) |a− b| | | ≥ |
∂2 

so 
1 

a− b f−1(a)− f−1(b) . (2.90) | | ≥ 
2
| |

This shows that f−1 is continuous on V = Bδ/4. 

As a last item for today’s lecture, we show the following: 

Claim. The map f−1 is differentiable at 0, and Df−1(0) = I. 

Proof. Let k ∈ Rn − {0} and choose k=̇0. We are trying to show that 

f−1(0 + k)− f−1(0)−Df−1(0)k → 0 as k → 0. (2.91) 
k| | 

We simplify 
f−1(0 + k)− f−1(0)−Df−1(0)k 

= 
f−1(k)− k

. (2.92) 
k k| | | | 

Define h = f−1(k) so that k = f(h) and |k| ≤ 2|h|. To show that 

f−1(k)− k 
0 as k → 0, (2.93) 

|k|
→

it suffices to show that 
f−1(k)− k 

0 as h→ 0. (2.94) 
|h|

→
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That is, it suffices to show that


h− f(h) 

|h| 
→ 0 as h → 0. (2.95) 

But this is equal to 

− 
f(h)− f(0)− Df(0)h 

|h| 
, (2.96) 

which goes to zero as h 0 because f is differentiable at zero. → 

The proof of the Inverse Function Theorem continues in the next lecture.
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Lecture 7

We continue our proof of the Inverse Function Theorem.

As before, we let U be an open set in Rn, and we assume that 0 ∈ U . We let


f : U → Rn be a C 1 map, and we assume f(0) = 0 and that Df(0) = I. We 
summarize what we have proved so far in the following theorem. 

Theorem 2.18. There exists a neighborhood U0 of 0 in U and a neighborhood V of 
0 in Rn such that 

1. f maps U0 bijectively onto V 

2. f−1 : V U0 is continuous, → 

3. f−1 is differentiable at 0. 

Now, we let U be an open set in Rn, and we let f : U → Rn be a C 2 map, as before, 
but we return to our original assumptions that a ∈ U , b = f(a), and Df(a) : Rn Rn →
is bijective. We prove the following theorem. 

Theorem 2.19. There exists a neighborhood U0 of a in U and a neighborhood V of 
b in Rn such that 

1. f maps U0 bijectively onto V 

2. f−1 : V U0 is continuous, → 

3. f−1 is differentiable at b. 

Proof. The map f : U → Rn maps a to b. Define U � = U − a = { x− a : x ∈ U} . Also 
define f1 : U

� → Rn by f1(x) = f(x + a)− b, so that f1(0) = 0 and Df1(0) = Df(a) 
(using the Chain Rule). 

Let A = Df(a) = Df1(0). We know that A is invertible. 
Now, define f2 : U

� Rn by f2 = A−1f1, so that f2(0) = 0 and Df2(0) = I.→
The results from last lecture show that the theorem at hand is true for f2. Because 
f1 = A f2, the theorem is also true for f1. Finally, because f(x) = f1(x− a)+ b, the ◦
theorem is true for f . 

So, we have a bijective map f : U0 → V . Let us take c ∈ U0 and look at the 
derivative � � 

∂fi
Df(c) ∼ 

∂xj 
(c) = Jf (c). (2.97) 

Note that � � 
∂fi

Df(c) is bijective ⇐⇒ det 
∂xj 

(c) = 0. (2.98) 

∂fiBecause f is C 1, the functions are continuous on U0. If det Jf (a) = 0, then 
∂xj 

det Jf (c) = 0 for c close to a. We can shrink U0 and V such that det Jf (c) = 0 for 
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all c ∈ U0, so for every c ∈ U0, the map f−1 is differentiable at f(c). That is, f−1 is 
differentiable at all points of V . 

We have thus improved the previous theorem. We can replace the third point 
with 

3. f−1 is differentiable at all points of V. (2.99) 

Let f−1 = g, so that g ◦ f = identity map. The Chain Rule is used to show the 
following. Suppose p ∈ U0 and q = f(p). Then Dg(q) = Df(p)−1, so Jg(q) = Jf (p)

−1 . 
That is, for all x ∈ V , 

∂gi ∂fi 
−1 

(x) = (g(x)) . (2.100) 
∂xj ∂xj 

∂fiThe function f is C1, so is continuous on U0. It also follows that g is continuous, 
∂xj


∂fi
so (g(x)) is continuous on V .
∂xj 

Using Cramer’s Rule, we conclude that the entries of matrix on the r.h.s. of 
∂fiEquation 2.100 are continuous functions on V . This shows that 
∂xj 

is continuous on 

V , which implies that g is a C1 map. 
We leave as an exercise to show that f ∈ Cr implies that g ∈ Cr for all r. The 

proof is by induction. 
This concludes the proof of the Inverse Function Theorem, signifying the end of 

this section of the course. 

3 Integration 

3.1 Riemann Integral of One Variable 

We now begin to study the next main topic of this course: integrals. We begin our 
discussion of integrals with an 18.100 level review of integrals. 

We begin by defining the Riemann integral (sometimes written in shorthand as 
the R. integral). 

Let [a, b] ⊆ R be a closed interval in R, and let P be a finite subset of [a, b]. Then 
P is a partition if a, b ∈ P and if all of the elements ti, . . . , tN in P can be arranged 
such that t1 = a < t2 < < tn = b. We define Ii = [ti, ti+1], which are called the · · · 
subintervals of [a, b] belonging to P . 

Let f : [a, b] R be a bounded function, and let Ii be a subinterval belonging to →
P . Then we define 

mi = inf f : Ii → R 
(3.1) 

Mi = sup f : Ii → R, 

29




� 

� 

� 

� � 

� � 

from which we define the lower and upper Riemann sums 

L(f, P ) = mi × (length of Ii) 
i� (3.2) 

U(f, P ) = Mi × (length of Ii), 
i 

respectively. 
Clearly, 

L(f, P ) ≤ U(f, P ). (3.3) 

Now, let P and P � be partitions. 

Definition 3.1. The partition P is a refinement of P if P � ⊃ P . 

If P � is a refinement of P , then 

L(f, P �) ≥ L(f, P ), and 
(3.4) 

U(f, P �) ≤ U(f, P ). 

If P and P � are any partitions, then you can take P �� = P ∪ P �, which is a refinement 
of both P and P �. So, 

L(f, P ) ≤ L(f, P ��) ≤ U(f, P ��) ≤ U(f, P �) (3.5) 

for any partitions P, P �. That is, the lower Riemann sum is always less than or equal 
to the upper Riemann sum, regardless of the partitions used. 

Now we can define the Lower and Upper Riemann integrals 

f = l.u.b. {L(f, P ) P a partition of [a, b]| }
[a,b]� (3.6) 

f = g.l.b. {U(f, P ) P a partition of [a, b]| }
[a,b] 

We can see from the above that � 
f. (3.7) f ≤ 

Claim. If f is continuous, then 

f = f. (3.8) 

Definition 3.2. For any bounded function f : [a, b] R, the function f is (Riemann) →
integrable if 

f = f. (3.9) 
[a,b] [a,b] 

In the next lecture we will begin to generalize these notions to multiple variables.
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3.2 Riemann Integral of Several Variables 

Last time we defined the Riemann integral for one variable, and today we generalize 
to many variables. 

Definition 3.3. A rectangle is a subset Q of Rn of the form 

Q = [a1, b1]× · · · × [an, bn], (3.10) 

where ai, bi ∈ R. 

Note that x = (x1, . . . , xn) ∈ Q ⇐⇒ ai ≤ xi ≤ bi for all i. The volume of the 
rectangle is 

v(Q) = (b1 − a1) n − an), (3.11) · · · (b

and the width of the rectangle is 

width(Q) = sup(bi − ai). (3.12) 
i 

Recall (stated informally) that given [a, b] ∈ R, a finite subset P of [a, b] is a 
partition of [a, b] if a, b ∈ P and you can write P = {ti : i = 1, . . . , N}, where 
t1 = a < t2 < . . . < tN = b. An interval I belongs to P if and only if I is one of the 
intervals [ti, ti+1]. 

Definition 3.4. A partition P of Q is an n­tuple (P1, . . . , Pn), where each Pi is a 
partition of [ai, bi]. 

Definition 3.5. A rectangle R = I1 × · · · × In belongs to P if for each i, the interval 
Ii belongs to Pi. 

Let f : Q → R be a bounded function, let P be a partition of Q, and let R be a 
rectangle belonging to P . 

We define 

mRf = inf f = g.l.b. {f(x) : x ∈ R}
R 

(3.13) 
MRf = sup f = l.u.b. {f(x) : x ∈ R}, 

R 

from which we define the lower and upper Riemann sums, 

L(f, P ) = mR(f)v(R) 
R� (3.14) 

U(f, P ) = MR(f)v(R). 
R 
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It is evident that 
L(f, P ) ≤ U(f, P ). (3.15) 

Now, we will take a sequence of partitions that get finer and finer, and we will 
define the integral to be the limit. 

Let P = (P1, . . . , Pn) and P � = (P1
�, . . . , Pn

� ) be partitions of Q. We say that P � 

refines P if Pi
� ⊃ Pi for each i. 

Claim. If P � refines P , then 

L(f, P �) ≥ L(f.P ). (3.16) 

Proof. We let Pj = Pj
� for j =� i, and we let P � = a}, where a ∈ [ai, bi]. We i Pi ∪ {

can create any refinement by multiple applications of this basic refinement. If R is a 
rectangle belonging to P , then either 

1. R belongs to P �, or 

2. R = R� ∪R��, where R�, R�� belong to P �. 

In the first case, the contribution of R to L(f, P �) equals the contribution of R to 
L(f, P ), so the claim holds. 

In the second case, 
mRv(R) = mR(v(R�) + v(R��)) (3.17) 

and 
mr = inf 

R 
f ≤ inf 

R� 
f, inf 

R�� 
f. (3.18) 

So, 
mR ≤ mR� ,mR�� (3.19) 

Taken altogether, this shows that 

mRv(R) ≤ mR v(R
�) + mR�� v(R��) (3.20) 

Thus, R� and R�� belong to P �. 

Claim. If P � refines P , then 

U(f, P �) ≤ U(f, P ) (3.21) 

The proof is very similar to the previous proof. Combining the above two claims, 
we obtain the corollary 

Corollary 2. If P and P � are partitions, then 

U(f, P �) ≥ L(f, P ) (3.22) 
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Proof. Define P �� = (P1 ∪ P1
�, . . . , Pn ∪ Pn

� ). So, P �� refines P and P �. We have shown 
that 

U(f, P ��) ≤ U(f, P ) 

L(f, P �) ≤ L(f, P ��) (3.23) 

L(f, P ��) ≤ U(f, P ��). 

Together, these show that 
U(f, P ) ≥ L(f, P �). (3.24) 

With this result in mind, we define the lower and upper Riemann integrals: 

f = sup L(f, P ) 
PQ� (3.25) 

f = inf U(f, P ). 
Q P 

Clearly, we have 

f, (3.26) f ≤ 
Q Q 

Finally, we define Riemann integrable. 

Definition 3.6. A function f is Riemann integrable over Q if the lower and upper 
Riemann integrals coincide (are equal). 

3.3 Conditions for Integrability 

Our next problem is to determine under what conditions a function is (Riemann) 
integrable. 

Let’s look at a trivial case: 

Claim. Let F : Q → R be the constant function f(x) = c. Then f is R. integrable 
over Q, and 

c = cv(Q). (3.27) 
Q 

Proof. Let P be a partition, and let R be a rectangle belonging to P . We see that 
mR(f) = MR(f) = c, so 

U(f, P ) = MR(f)v(R) = c v(R) 
R R (3.28) 

= cv(Q). 
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Similarly, 
L(f, P ) = cv(Q). (3.29) 

Corollary 3. Let Q be a rectangle, and let {Qi : i = 1, . . . , N} be a collection of 
rectangles covering Q. Then 

v(Q) ≤ v(Qi). (3.30) 

Theorem 3.7. If f : Q→ R is continuous, then f is R. integrable over Q. 

Proof. We begin with a definition 

Definition 3.8. Given a partition P of Q, we define 

mesh width(P ) = sup width(R). (3.31) 
R 

Remember that 

Q compact = ⇒ f : Q→ R is uniformly continuous. (3.32) 

That is, given � > 0, there exists δ > 0 such that if x, y ∈ Q and x − y < δ, then | |
f(x)− f(y) < �.||

Choose a partition P of Q with mesh width less than δ. Then, for every rectangle 
R belonging to P and for every x, y ∈ R, we have x− y < δ. By uniform continuity | |
we have, MR(f)− mR(f) ≤ �, which is used to show that 

U(f, P )− L(f, P ) = (MR(f)− mR(f))v(R) 
R 

≤ � (3.33) 
v(R) 

≤ �v(Q). 

We can take �→ 0, so 
sup L(f, P ) = inf U(f, P ), (3.34) 
P P 

which shows that f is integrable. 

We have shown that continuity is sufficient for integrability. However, continuity 
is clearly not necessary. What is the general condition for integrability? To state the 
answer, we need the notion of measure zero. 

Definition 3.9. Suppose A ⊆ Rn . The set A is of measure zero if for every � > 
0, there exists a countable covering of A by rectangles Q1, Q2, Q3, . . . such that 

v(Qi) < �. 
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Theorem 3.10. Let f : Q → R be a bounded function, and let A ⊆ Q be the set 
of points where f is not continuous. Then f is R. integrable if and only if A is of 
measure zero. 

Before we prove this, we make some observations about sets of measure zero: 

1. Let A,B ⊆ Rn and suppose B ⊂ A. If A is of measure zero, then B is also of 
measure zero. 

2. Let Ai ⊆ Rn for i = 1, 2, 3, . . . , and suppose the Ai’s are of measure zero. Then 
∪Ai is also of measure zero. 

3. Rectangles are not of measure zero. 

We prove the second observation: 
For any � > 0, choose coverings Qi,1, Qi,2, . . . of Ai such that each covering has 

total volume less than �/2i . Then {Qi,j } is a countable covering of ∪Ai of total volume 

∞

= �. (3.35) 
2i 

i=1 
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We quickly review the definition of measure zero.

A set A ⊆ Rn is of measure zero if for every � > 0, there exists a covering of A by


rectangles Q1, Q2, Q3, . . . such that the total volume v(Qi) < �. 

Remark. In this definition we can replace “rectangles” by “open rectangles.” To 
see this, given any � > 0 let Q1, Q2, . . . be a cover of A with volume less than �/2. 
Next, choose Qi

� to be rectangles such that Int Qi
� ⊃ Qi and v(Q�

i) < 2v(Qi). Then 
Int Q1

� , Int Q2
� , . . . cover A and have total volume less than �. 

We also review the three properties of measure zero that we mentioned last time, 
and we prove the third. 

1. Let A,B ⊆ Rn and suppose B ⊂ A. If A is of measure zero, then B is also of 
measure zero. 

2. Let Ai ⊆ Rn for i = 1, 2, 3, . . . , and suppose the Ai’s are of measure zero. Then 
∪Ai is also of measure zero. 

3. Rectangles are not of measure zero. 

We prove the third property: 

Claim. If Q is a rectangle, then Q is not of measure zero. 

Proof. Choose � < v(Q). Suppose Q1, Q2, . . . are rectangles such that the total 
volume is less than � and such that Int Q1, Int Q2, . . . cover Q. 

The set Q is compact, so the H­B Theorem implies that the collection of sets 
Int Q1, . . . , Int QN cover Q for N sufficiently large. So, 

N

 
Q ⊆ Qi, (3.36) 

i=1 

which implies that 
N� 

v(Q) ≤ v(Qi) < � < v(Q), (3.37) 
i=1 

which is a contradiction. 

We then have the following simple result. 

Claim. If Int A is non­empty, then A is not of measure zero. 

Proof. Consider any p ∈ Int A. There exists a δ > 0 such that U(p, δ) = {x : x−p <| |
δ} is contained in A. Then let Q = {x : x− p It follows that if A is of measure | | ≤ δ}. 
zero, then Q is of measure zero, by the first property. We know that Q is not of 
measure zero by the third property. 
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We restate the necessary and sufficient condition for R. integrability from last 
time, and we now prove the theorem. 

Theorem 3.11. Let Q be a rectangle and f : Q → R be a bounded function. Let D 
be the set of points in Q where f is not continuous. Then f is R. integrable if and 
only if D is of measure zero. 

Proof. First we show that 

D is of measure zero = ⇒ f is R. integrable (3.38) 

Lemma 3.12. Let Q = [a1, b1]×· · ·× [an, bn], and let Qα, α = 1, . . . , N , be a covering 
of Q by rectangles. Then there exists a partition P of Q such that every rectangle R 
belonging to P is contained in Qα for some α. 

Proof. Write out Qα = I1 
α × · · · × Iα, and let n 

 

Pj = Endpoints of Ij
α ∩ [aj, bj] ∪ {aj, bj}. (3.39) 

α 

One can show that Pj is a partition of [aj, bj], and P = (P1, . . . , Pn) is a partition of 
Q with the above properties. 

Let f : Q→ R be a bounded function, and let D be the set of points at which f 
is discontinuous. Assume that D is of measure zero. We want to show that f is R. 
integrable. 

Let � > 0, and let Qi
� , i = 1, 2, 3, . . . be a collection of rectangles of total volume 

less than � such that Int Q1
� , Q2

� , . . . cover D. 
If p ∈ Q−D, we know that f is continuous at p. So, there exists a rectangle Qp with 

p ∈ Int Qp and f(x)− f(p) < �/2 for all x ∈ Qp (for example, Qp =| | {x||x− p| ≤ δ}
for some δ). Given any x, y ∈ Qp, we find that f(x)− f(y) < �.| |

The rectangles Int Qp, p ∈ Q − D along with the rectangles Int Qi
� , i = 1, 2, . . . 

cover Q. The set Q is compact, so the H­B Theorem implies that there exists a finite 
open subcover: 

Qi ≡ Int Qpi
, i = 1, . . . , �; Int Qj

� , j = 1, . . . , �. (3.40) 

Using the lemma, there exists a partition P of Q such that every rectangle belonging 
to P is contained in a Qi or a Q�

j. 
We now show that f is R. integrable. 

U(f, P )− L(f, P ) = (MR(f)−mR(f))v(R) 
R� (3.41) 

+ (MR (f)−mR� (f))v(R�), 
R� 
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where each R in the first sum belongs to a Qi, and each R� in the second sum belongs 
to a Q�

j. 
We look at the first sum. If x, y ∈ R ⊆ Qi, then f(x)− f(y) ≤ �. So, MR(f)−| |

mR(f) ≤ �. It follows that 

(MR(f)− mR(f))v(R) ≤ � v(R) 
R R (3.42) 

≤ �v(Q). 

We now look at the second sum. The function f : Q → R is bounded, so there 
exists a number c such that −c ≤ f(x) ≤ c for all x ∈ Q. Then, MR� (f)−mR� (f) ≤ 2c 
so 

(MR (f)− fR� (f))v(R�) ≤ 2c v(R�) 
R� R� 

= 2c v(R�) 
i=1 R� ⊆Qi

� (3.43) 

≤ 2c v(Q�
i) 

i 

≤ 2c�. 

Substituting back into Equation 3.41, we get 

U(f, P )− L(f, P ) ≤ �(v(Q) + 2c). (3.44) 

So, � � 

Q 

f − 
Q 

f ≤ �(v(Q) + 2c), (3.45) 

because � � 
U(f, P ) ≥ 

Q 

f and L(f, P ) ≤ 
Q 

f. (3.46) 

Letting � go to zero, we conclude that � � 
f = f, (3.47) 

Q Q 

which shows that f is Riemann integrable. 
This concludes the proof in one direction. We do not prove the other direction. 

Corollary 4. Suppose f : Q → R is R. integrable and that f ≥ 0 everywhere. If 
f = 0, then f = 0 except on a set of measure zero. 

Q 
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Proof. Let D be the set of points where f is discontinuous. The function f is R. 
integrable, so D is of measure zero. 

If p ∈ Q− D, then f(p) = 0. To see this, suppose that f(p) = δ > 0. The function 
f is continuous at p, so there exists a rectangle R0 centered at p such that f ≥ nδ/2 
on R0. Choose a partition P such that R0 is a rectangle belonging to P . On any 
rectangle R belonging to P , f ≥ 0, so mR(f) ≥ 0. This shows that 

L(f, P ) = mR0(f)v(R0) + mR(f)v(R) 
R=R0� (3.48) 

δ 
v(R0) + 0.≥ 

2 

But we assumed that f = 0, so we have reached a contradiction. So f = 0 at all 
Q 

points p ∈ Q− D. 
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Lecture 10

We begin today’s lecture with a simple claim. 

Claim. Let Q ⊆ Rn be a rectangle and f, g : Q → R be bounded functions such that 
f ≤ g. Then � � 

Q 

f ≤ 
Q 

g. (3.49) 

Proof. Let P be a partition of Q, and let R be a rectangle belonging to P . Clearly, 
mR(f) ≤ mR(g), so 

L(f, P ) = mR(f)v(R) (3.50) 
R 

L(g, P ) = mR(g)v(R) (3.51) 
R 

= ⇒ L(f, P ) ≤ L(g, P ) ≤ g, (3.52) 
Q 

for all partitions P . The lower integral 

f (3.53) 
Q 

is the l.u.b. of L(f, P ), so 

g. (3.54) f ≤ 
Q Q 

Similarly, 

g. (3.55) f ≤
Q Q 

It follows that if f ≤ g, then 

g. (3.56) f ≤
Q Q 

This is the monotonicity property of the R. integral. 

3.4 Fubini Theorem 

In one­dimensional calculus, when we have a continuous function f : [a, b] R, then →
we can calculate the R. integral � b 

f(x)dx = F (b)− F (a), (3.57) 
a 
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where F is the anti­derivative of f . 
When we integrate a continuous function f : Q → R over a two­dimensional 

region, say Q = [a1, b1]× [a2, b2], we can calculate the R. integral � � b1 � b2 � b1 �� b2 � 

f = f(x, y)dxdy = f(x, y)dxdy (3.58) 
Q a1 a2 a1 a2 

That is, we can break up Q into components and integrate separately over those 
components. We make this more precise in the following Fubini Theorem. 

First, we define some notation that will be used. 
Let n = k + � so that Rn = Rl × R� . Let c = (c1, . . . , cn) ∈ Rn . We can write 

c = (a, b), where a = (c1, . . . , c) ∈ Rk and b = (ck+1, . . . , ck+�) ∈ R� . Similarly, 
let Q = n be a rectangle in Rn . Then we can write Q = A × B, where I1 × · · · I
A = I1 × · · · × Ik ∈ Rk and B = Ik+1 × · · · × Ik+� ∈ R� . Along the same lines, we 
can write a partition P = (P1, . . . , Pn) as P = (PA, PB), where PA = (P1, . . . , Pk) and 
PB = (Pk+1, . . . , Pk+�). 

Fubini Theorem. Let f : Q→ R be a bounded function and Q = A×B a rectangle 
as defined above. We write f = f(x, y), where x ∈ A, and y ∈ B. Fixing x ∈ A, we 
can define a function fx : B R by fx(y) = f(x, y). Since this function is bounded, →
we can define new functions g, h : A R by→ � 

g(x) = fx, (3.59) 
B 

h(x) = fx. (3.60) 
B 

Note that g ≤ h. The Fubini Theorem concludes the following: If f is integrable over 
Q, then g and h are integrable over A and 

g = h = f. (3.61) 
A A Q 

Proof. Let P = (PA, PB) be a partition of Q, and let R = RA × RB be a rectangle 
belonging to P (so RA belongs to PA and RB belongs to PB). Fix x0 ∈ A. 

First, we claim that 
mRA×RB 

(f) ≤ mRb
(fx0), (3.62) 

the proof of which is straightforward. 
Next, 

mRA×RB 
(f)v(RB) ≤ mRB 

(fx0)v(RB) 
RB RB 

= L(fx0 , PB) (3.63) 

fx0 = g(x0).≤ 
B 
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So, � 
mRA×RB 

(f)v(RB) ≤ g(x0) (3.64) 
RB 

for all x0 ∈ RA. The above equation must hold for the infimum of the r.h.s, so 

mRA×RB 
(f)v(RB) ≤ mRA

(g). (3.65) 
RB 

Observe that v(RA × RB) = v(RA)v(RB), so 

L(f, P ) = mRA×RB 
(f)v(RA × RB) 

RA×RB 

≤ mRA
(g)v(RA) (3.66) �RA 

g. ≤ 
A 

We have just shown that for any partition P = (PA, PB), 

L(f, P ) ≤ L(g, PA) ≤ g, (3.67) 
A 

so � � 
g. (3.68) f ≤ 

Q A 

By a similar argument, we can show that 

f. (3.69) h ≤
A Q 

Summarizing, we have shown that 

f, (3.70) f ≤ g ≤ h ≤ 
Q A A Q 

where we used monotonicity for the middle inequality. Since f is R. integrable, 

f = f, (3.71) 
Q Q 

so all of the inequalities are in fact equalities. 
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Remark. Suppose that for every x ∈ A, that fx : B R is R. integrable. That’s→
the same as saying g(x) = h(x). Then � �� � � �� � 

fx = dx f(x, y)dy 
A B �A B (3.72) 

= f(x, y)dxdy, 
A×B 

using standard notation from calculus. 

Remark. In particular, if f is continuous, then fx is continuous. Hence, the above 
remark holds for all continuous functions. 

3.5 Properties of Riemann Integrals 

We now prove some standard calculus results. 

Theorem 3.13. Let Q ⊆ Rn be a rectangle, and let f, g : Q → R be R. integrable 
functions. Then, for all a, b ∈ R, the function af + bg is R. integrable and 

af + bg = a f + b g. (3.73) 
Q Q Q 

Proof. Let’s first assume that a, b ≤ 0. Let P be a partition of Q and R a rectangle 
belonging to P . Then 

amR(f) + bmR(g) ≤ mR(af + bg), (3.74) 

so 

aL(f, P ) + bL(g, P ) ≤ L(af + bg, P ) 

(3.75) 
af + bg. ≤ 

Q 

Claim. For any pair of partitions P � and P ��, 

aL(f, P �) + bL(g, P ��) ≤ af + bg. (3.76) 
Q 

To see that the claim is true, take P to be a refinement of P � and P ��, and apply 
Equation 3.75. Thus, 

a f + b g ≤ af + bg. (3.77) 
Q Q Q 

Similarly, we can show that 

af + bg ≤ a f + b g. (3.78) 
Q Q Q 
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Since f and g are R. integrable, we know that


f = f, g = g. (3.79) 
Q Q Q Q 

These equalities show that the previous inequalities were in fact equalities, so 

af + bg = a f + b g. (3.80) 
Q Q Q 

However, remember that we assumed that a, b ≥ 0. To deal with the case of 
arbitrary a, b, it suffices to check what happens when we change the sign of a or b. 

Claim. � � 
= f. (3.81) −f − 

QQ 

Proof Hint. Let P be any partition of Q. Then L(f, P ) = −U(−f, P ). 

You should check this claim, and then use it to complete the proof. 
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Lecture 11

We review some basic properties of the Riemann integral. 
Let Q ⊆ Rn be a rectangle, and let f, g : q → R be bounded functions. Assume 

that f, g are R. integrable. We have the following properties of R. integrals: 

•	 Linearity: a, b ∈ R = ⇒ � 
af + bg is R. integrable and 

af + bg = a f + b g.	 (3.82) 
Q Q Q 

•	 Monotonicity: If f ≤ g, then 

g.	 (3.83) f ≤
Q Q 

•	 Maximality Property: Let h : Q → R be a function defined by h(x) = 
max(f(x), g(x)). 

Theorem 3.14. The function h is R. integrable and � �� � � 

h ≥ max f, g .	 (3.84) 
Q Q Q 

Proof. We need the following lemma. 

Lemma 3.15. If f and g are continuous at some point x0 ∈ Q, then h is 
continuous at x0. 

Proof. We consider the case f(x0) = g(x0) = h(x0) = r. The functions f and 
g are continuous at x0 if and only if for every � > 0, there exists a δ > 0 such 
that f(x)− f(x0) < � and g(x)− g(x0) < � whenever x− x0 < δ.| | | |	 | | 
Substitute in f(x0) = g(x0) = r. The value of h(x) is either f(x) or g(x), so 
h(x)− r < � for x− x0 < δ. That is h(x)− h(x0) < � for x− x0 < δ, so h| | | | | | | |
is continuous at x0. 

The proofs of the other cases are left to the student. 

We defined h = max(f, g). The lemma tells is that h is integrable. 

Define E,F , and G as follows: 

E = Set of points in Q where f is discontinuous, (3.85) 

F = Set of points in Q where g is discontinuous, (3.86) 

G = Set of points in Q where h is discontinuous. (3.87) 
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The functions f, g are integrable over Q if and only if E,F are of measure zero.

The lemma shows that G ⊆ E ∪ F , so h is integrable over Q. 
proof, we notice that 

To finish the 

h = max(f, g) ≥ f, g. (3.88) 

Then, by monotonicity, 

h ≥ max f, g . (3.89) 
Q Q Q 

Remark. Let k = min(f, g). Then k = − max(−f,−g). So, the maximality property 
also implies that k is integrable and 

k ≤ min f, g . (3.90) 
Q Q Q 

A useful trick for when dealing with functions is to change the sign. The preceding 
remark and the following are examples where such a trick is useful. 

Let f : Q→ R be a R. integrable function. Define 

f+ = max(f, 0), f− = max(−f, 0). (3.91) 

Both of these functions are R. integrable and non­negative: f+, f− ≥ 0. Also note 
that f f+ − f This decomposition is a trick we will use over and over again. = −. 

Also note that f = f+ + f−, so f is R. integrable. By monotonicity, | | | | 

|
f = f+ + f| −
Q Q Q 

f+ − f (3.92) ≥ −
Q Q 

= f. 
Q 

By replacing f by −f , we obtain 

Q 

|
f | ≥ −f 
Q 

(3.93) 

f. = − 
Q 

Combining these results, we arrive at the following claim


Claim. 

f
| ≥
 f
|
 (3.94) 
Q Q 

Proof. The proof is above. 
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3.6 Integration Over More General Regions 

So far we’ve been defining integrals over rectangles. Let us now generalize to other 
sets. 

Let S be a bounded set in Rn, and let f : S R be a bounded function. Let→
fS : Rn R be the map defined by →	 � 

fS(x) = 
f(x) if x ∈ S, 

(3.95) 
0 if x /∈ S. 

¯Let Q be a rectangle such that Int Q ⊃ S. 

Definition 3.16. The map f is Riemann integrable over S if fS is Riemann integrable 
over Q. Additionally, 

f = fS. (3.96) 
S Q 

One has to check that this definition does not depend on the choice of Q, but we 
do not check this here. 

Claim. Let S be a bounded set in Rn, and let f, g : S R be bounded functions. →
Assume that f, g are R. integrable over S. Then the following properties hold: 

•	 Linearity: If a, b ∈ R, then af + bg is R. integrable over S, and 

af + bg = a f + b g.	 (3.97) 
S	 S S 

•	 Monotonicity: If f ≤ g, then 

g.	 (3.98) f ≤
S S 

•	 Maximality: If h = max(f, g) (over the domain S), then h is R. integrable over 
S, and � �� � � 

h ≥ max f, g .	 (3.99) 
S S S 

Proof. The proofs are easy, and we outline them here. 

•	 Linearity: Note that afS + bgS = (af + bg)S, so 

af + bg = (af + bg)S 
S Q 

= a fS + b gS (3.100) �Q �	 Q 

= a f + b g. 
S S 
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• Monotonicity: Use f ≤ g = ⇒ fS ≤ gS. 

• Maximality: Use h = max(f, g) = ⇒ hS = max(fS, gS). 

Let’s look at some nice set theoretic properties of the Riemann integral. 

Claim. Let S, T be bounded subsets of Rn with T ⊆ S. Let f : S R be bounded →
and non­negative. Suppose that f is R. integrable over both S and T . Then 

f. (3.101) f ≤
T S 

¯Proof. Clearly, fT ≤ fS. Let Q be a rectangle with S ⊇ Int Q. Then 

fT ≤ fS. (3.102) 
Q Q 

Claim. Let S1, S2 be bounded subsets of Rn, and let f : S1 ∪ S2 → R be a bounded 
function. Suppose that f is R. integrable over both S1 and S2. Then f is R. integrable 
over S1 ∩ S2 and over S1 ∪ S2, and 

f = f + f − f. (3.103) 
S1∪S2 S1 S2 S1∩S2 

Proof. Use the following trick. Notice that 

fS1∪S2 = max(fS1 , fS2), (3.104) 

fS1∩S2 = min(fS1 , fS2). (3.105) 

Now, choose Q such that 
Int Q ⊃ S1 ∪ S2, (3.106) 

so fS1∪S2 and fS1∩S2 are integrable over Q. 
Note the identity 

fS1∪S2 = fS1 + fS2 − fS1∩S2 . (3.107) 

So, 

fS1∪S2 = fS1 + fS2 − fS1∩S2 , (3.108) 
Q Q Q Q 

from which it follows that 

f = f + f − f. (3.109) 
S1∪S2 S1 S2 S1∩S2 
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Lecture 12

So far, we have been studying only the Riemann integral. However, there is also 

the Lebesgue integral. These are the two basic integral theories. The Riemann inte­
gral is very intuitive and is usually adequate for problems that usually come up. The 
Lebesgue integral is not as intuitive, but it can handle more general problems. We do 
not encounter these problems in geometry or physics, but we would in probability and 
statistics. You can learn more about Lebesgue integrals by taking Fourier Analysis 
(18.103) or Measure and Integration (18.125). We do not study the Lebesgue integral. 

Let S be a bounded subset of Rn . 

Theorem 3.17. If the boundary of S is of measure zero, then the constant function 
1 is R. integrable over S. The converse is also true. 

¯Proof. Let Q be a rectangle such that Int Q ⊃ S. Define 

1 if x ∈ S, 
1S(x) = (3.110) 

0 if x /∈ S. 

The constant function 1 is integrable over S if and only if the function 1S is integrable 
over Q. The function 1S is integrable over Q if the set of points D in Q where 1S is 
discontinuous is of measure zero. If so, then � � 

1S = 1. (3.111) 
Q S 

Let x ∈ Q. 

1. If x ∈ Int S, then 1S = 1 in a neighborhood of x, so 1S is continuous at x. 

2. If x ∈ Ext S, then 1S = 0 in a neighborhood of x, so 1S is continuous at x. 

3. If x ∈ Bd X, then in every neighborhood U of x there exists points in Ext S 
where 1S = 0 and points in Int S where 1S = 1. So, 1S is discontinuous at x. 

Thus, D is the boundary of S, D = Bd S. Therefore, the function 1S is integrable if 
and only if Bd S is of measure zero. 

3.7 Improper Integrals 

Definition 3.18. The set S is rectifiable if the boundary of S is of measure zero. If 
S is rectifiable, then 

v(S) = 1. (3.112) 
S 

Let us look at the properties of v(S): 
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1. Monotonicity: If S1 and S2 are rectifiable and S1 ⊆ S2, then v(S1) ≤ v(S2). 

2. Linearity: If S1, S2 are rectifiable, then S1 ∪ S2 and S1 ∩ S2 are rectifiable, and 

v(S1 ∪ S2) = v(S1) + v(S2)− v(S1 ∩ S2). (3.113) 

3. If S is rectifiable, then v(S) = 0 if and only if S is of measure zero. 

4. Let A = Int S. If S is rectifiable, then A is rectifiable, and v(S) = v(A). 

The first two properties above are special cases of the theorems that we proved last 
lecture: 

1.	 � � 
if S1 ⊆ S2. (3.114) 1 ≤

S1 S2 

2.	 � � � � 
1 = 1 + 1 − 1. (3.115) 

S1∪S2 S1 S2 S1∩S2 

To see the the third and fourth properties are true, we use some previous results. Let 
Q be a rectangle, and let f : Q → R be R. integrable. We proved the following two 
theorems: 

Theorem A. If f ≥ 0 and	 f = 0, then f = 0 except on a set of measure zero. 
Q 

Theorem B. If f = 0 except on a set of measure zero, then 
S 
f = 0. 

Property 3. above is a consequence of Theorem A with f = 1S.

Property 4. above is a consequence of Theorem B with f = 1S − 1A.

We are still lacking some simple criteria for a bounded set to be integrable. Let


us now work on that. 
Let S be a bounded set, and let f : S R be a bounded function. We want →

simple criteria on S and f such that f to be integrable over S. 

Theorem 3.19. If S is rectifiable and f : S R is bounded and continuous, then f→
is R. integrable over S. 

¯Proof. Let Q be a rectangle such that Int Q ⊃ S. Define fS : Q→ R by 

fS(x) = 
f(x) if x ∈ S, 

(3.116) 
0 if x /∈ S. 

By definition, f is integrable over S if and only if fS is integrable over Q. If so then 
f = fS.S Q 

Let D be the set of points in Q where fS is discontinuous. Then fS is integrable 
over Q if and only if D is of measure zero.	 What is D? 
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1. If x ∈ Int S, then fS = f in a neighborhood of x, so fS is continuous at x. 

2. If x ∈ Ext S, then fS = 0 in a neighborhood of x, so fS is continuous at x. 

So, we know that D ⊆ Bd S. Because S is rectifiable, the boundary of S has measure 
zero, so D has measure zero. Thus, fS is R. integrable, and therefore so is f . 

Theorem 3.20. Let A be an open subset of Rn . There exists a sequence of compact 
rectifiable sets CN , N = 1, 2, 3, . . . such that 

CN ⊆ Int CN+1 (3.117) 

and 

 
CN = A. (3.118) 

Definition 3.21. The set {CN} is called an exhaustion of A. 

Proof. Take the complement of A, namely B = Rn −A. Define d(x,B) = infy∈B{|x− 
. The function d(x,B) is a continuous function of x (the theorem for this is in y|}

section 4 of Munkres). Let 

DN = {x ∈ A : d(x,B) ≥ 1/N and x . (3.119) | | ≤ N}

The set DN is compact. It is easy to check that DN ⊆ Int DN+1. 

Claim. 

 
DN = A. (3.120) 

Proof. Let x ∈ A. The set A is open, so there exists � > 0 such that the set 
{y ∈ Rn : y − x ≤ �} is contained in A. So, d(x,B) ≥ �.| |

Now, choose N such that 1/N < � and such that |x| < N . Then, by definition, 
x ∈ DN . Therefore ∪DN = A. 

So, the DN ’s satisfy the right properties, except they are not necessarily rectifiable. 
We can make them rectifiable as follows. 

For every p ∈ DN , let Qp be a rectangle with p ∈ Int Qp and Qp ⊆ Int DN+1. 
Then the collection of sets {Int Qp : p ∈ DN} is an open cover of DN . By the H­B 
Theorem, there exists a finite subcover Int Qp1 , . . . , Int Qpr . Now, let 

CN = Qp1 ∪ · · · ∪Qpr . (3.121) 

Then CN ⊆ Int DN ⊆ Int CN+1. 
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Lecture 13

Let A be an open set in Rn, and let f : A R be a continuous function. For the → 

moment, we assume that f ≥ 0. Let D ⊆ A be a compact and rectifiable set. Then 
f |D is bounded, so f is well­defined. Consider the set of all such integrals: 

D 

# = { f : D ⊆ A,D compact and rectifiable}. (3.122) 
D 

Definition 3.22. The improper integral of f over A exists if ∗ is bounded, and we 
define the improper integral of f over A to be its l.u.b. 

f ≡ l.u.b. f = improper integral of f over A. (3.123) 
A D 

Claim. If A is rectifiable and f : A R is bounded, then → 

f = f. (3.124) 
A A 

Proof. Let D ⊆ A be a compact and rectifiable set. So, 

f (3.125) f ≤�D �A 
= ⇒ sup f (3.126) f ≤

D D A 

= ⇒ 
A 

f ≤ f. (3.127) 
A 

The proof of the inequality in the other direction is a bit more complicated. 
¯Choose a rectangle Q such that A ⊆ Int Q. Define fA : Q→ R by 

fA(x) = 
f(

0 

x) if x ∈ A, 

if x /∈ A. 
(3.128) 

By definition, � � 
f = fA. (3.129) 

A Q 

Now, let P be a partition of Q, and let R1, . . . , Rk be rectangles belonging to a 
partition of A. If R is a rectangle belonging to P not contained in A, then R− A = φ. 
In such a case, mR(fA) = 0. So 

k

L(fA, P ) = mRi
(fA)v(Ri). (3.130) 

i=1 
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On the rectangle Ri, 
fA = f ≥ mRi

(fA). (3.131) 

So, 

k

mRi
(fA)v(Ri) ≤ f 

i=1 Ri 

= f (3.132) 
D 

,≤ 
A � 

where D = Ri, which is compact and rectifiable. 
The above was true for all partitions, so 

fA ≤ f. (3.133) 
Q Z 

We proved the inequality in the other direction, so 

f = f. (3.134) 
A A 

3.8 Exhaustions 

Definition 3.23. A sequence of �compact sets Ci, i = 1, 2, 3 . . . is an exhaustion of A 
if Ci ⊆ Int Ci1 for every i, and Ci = A. 

It is easy to see that 

 
Int Ci = A. (3.135) 

Let Ci, i = 1, 2, 3, . . . be an exhaustion of A by compact rectifiable sets. Let 
f : A→ R be continuous and assume that f ≥ 0. Note that 

f, (3.136) f ≤
Ci Ci=1 

since Ci=1 ⊃ Ci. So 

f, i = 1, 2, 3 . . . (3.137) 
Ci 

is an increasing (actually, non­decreasing) sequence. Hence, either 
Ci� f → ∞ as 

i→∞, or it has a finite limit (by which we mean limi→∞ f exists).
Ci 
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Theorem 3.24. The following two properties are equivalent: 

1. f exists,
A 

2. limi→∞ f exists.
Ci 

Moreover, if either (and hence both) property holds, then 

f = lim f. (3.138) 
A i→∞ Ci 

Proof. The set Ci is a compact and rectifiable set contained in A. So, if 

f exists, then (3.139) 
A � � # 

Ci 

f ≤ 
A 

f. (3.140) 

That shows that the sets � 
f, i = 1, 2, 3 . . . (3.141) 

Ci 

are bounded, and 

lim f ≤ f. (3.142) 
Ai→∞ Ci 

Now, let us prove the inequality in the other direction. 
The collection of sets {Int Ci : i = 1, 2, 3 . . . } is an open cover of A. Let D ⊆ A 

be a compact rectifiable set contained in A. By the H­B Theorem, 

N

 
Int Ci, (3.143) D ⊆ 

i=1 

for some N . So, D ⊆ Int CN ⊆ CN . For all such D, 

f ≤ lim f. (3.144) f ≤
D Ci 

i→∞ Ci 

Taking the infimum over all D, we get 

f ≤ lim f. (3.145) 
A i→∞ Ci 

We have proved the inequality in both directions, so 

f = lim f. (3.146) 
A i→∞ Ci 
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A typical illustration of this theorem is the following example.

Consider the integral
 � 1 dx 

, (3.147) √
x0 

which we wrote in the normal integral notation from elementary calculus. In our 
notation, we would write this as 

1 
. (3.148) √

x(0,1) 

1 1Let CN = [
N 
, 1 − 

N 
]. Then 

1 A 
= lim 

(0,1) 

√
x N→∞ CN 

√
x (3.149) 

1−1/N 
= 2

√
x| 21/N → as N → ∞. 

So, 
1 

= 2. (3.150) √
x(0,1) 

Let us now remove the assumption that f ≥ 0. Let f : A R be any continuous →
function on A. As before, we define 

f+(x) = max{f(x), 0}, (3.151) 

f−(x) = max{−f(x), 0}. (3.152) 

We can see that f+ and f− are continuous. 

Definition 3.25. The improper R. integral of f over A exists if and only if the 
improper R. integral of f+ and f− over A exist. Moreover, we define 

f = f+ − f−. (3.153) 
A A A 

We compute the integral using an exhaustion of A. � # �� � � 

f = lim f+ − f
A N→∞ � CN CN 

− 

(3.154) 

= lim f. 
N→∞ CN 

Note that f = f+ + f−, so | | �� � � � 
lim f+ + f = lim f . (3.155) 
N→∞ CN CN 

− 
N→∞ CN 

| |
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Therefore, the improper integral of f exists if and only if the improper integral of |f |
exists. 

Define a function f : R R by →

0 
f(x) = 

e−1/x 

if x ≤ 0, 
(3.156) 

if x > 0. 

This is a C∞(R) function. Clearly, f �(x) = f ��(x) = . . . = 0 when x = 0, so in the 
Taylor series expansion of f at zero, 

n anx = 0, (3.157) 

all of the coefficients an are zero. However, f has a non­zero value in every neighbor­
hood of zero. 

Take a ∈ R and � > 0. Define a new function ga,a+� : R R by →

ga,a+�(x) = 
f(x− a) 

. (3.158) 
f(x− a) + f(a+ �− x) 

The function ga,a+� is a C∞(R) function. Notice that 

0 if x ≤ a, 
(3.159) ga,a+� = 

1 if x ≥ a+ �. 

Take b such that a < a+ � < b− � < b. Define a new function ha,b ∈ C∞(R) by 

ha,b(x) = ga,a+�(x)(1 − ga−�,b(x)). (3.160) 

Notice that 

a,b =


⎧ ⎪⎨ ⎪⎩


0 if x ≤ a, 

1 if a+ � ≤ x ≤ b− �, (3.161)
h

0 if b ≤ x. 
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Lecture 14

As before, let f : R R be the map defined by →

0 
f(x) = 

e−1/x 

if x ≤ 0, 
(3.162) 

if x > 0. 

This is a Cinf(R) function. Take the interval [a, b] ∈ R and define the function 
fa,b : R → R by fa,b(x) = f(x− a)f(b− x). Note that fa,b > 0 on (a, b), and fa,b = 0 
on R − (a, b). 

We generalize the definition of f to higher dimensions. Let Q ⊆ Rn be a rectangle, 
where Q = [a1, b1]× · · · × [an, bn]. Define a new map fQ : Rn R bye →

fQ(x1, . . . , xn) = fa1,b1(x1) . . . fan,bn (xn). (3.163) 

Note that fQ > 0 on Int Q, and that fQ = 0 on Rn − Int Q. 

3.9 Support and Compact Support 

Now for some terminology. Let U be an open set in Rn, and let f : U R be a →
continuous function. 

Definition 3.26. The support of f is 

supp f = x ∈ U : f(x) = 0}. (3.164) 

For example, supp fQ = Q. 

Definition 3.27. Let f : U R be a continuous function. The function f is→
compactly supported if supp f is compact. 

Notation. 

k 
0 (U) = The set of compactly supported Ck functions on U. (3.165) C

kSuppose that f ∈ C0 (U). Define a new set U1 = (Rn −supp f). Then U∪U1 = Rn , 
because supp f ⊆ U . 

˜Define a new map f : Rn R by →

f̃ = 
f on U , 

(3.166) 
0 on U1. 

˜ ˜ kThe function f is Ck on U and Ck on U1, so f is in C0 (Rn). 
So, whenever we have a function f ∈ Ck is compactly supported on U , we can 

kdrop the tilde and think of f as in C0 (Rn). 
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3.10 Partitions of Unity 

Let {Uα : α ∈ I} be a collection of of open subsets of Rn such that U = αUα.∪

Theorem 3.28. There exists a sequence of rectangles Qi, i = 1, 2, 3, . . . such that 

1.	 Int Qi, i = 1, 2, 3 . . . is a cover of U , 

2. Each Qi ⊂ Iα for some α, 

3. For every point p ∈ U , there exists a neighborhood Up of p such that Up ∩Qi = φ 
for all i > Np. 

Proof. Take an exhaustion A1, A2, A3, . . . of U . By definition, the exhaustion satisfies ⎧ ⎨	Ai ⊆ Int Ai+1 

Ai is compact ⎩ 
= U.∪Ai 

We previously showed that you can always find an exhaustion. 
Let Bi = Ai − Int Ai−1. For each x ∈ Bi, let Qx be a rectangle with x ∈ Int Qx 

such that Qx ⊆ Uα, for some alpha, and Qx ⊂ Int Ai+1 − Ai−2. Then, the collection 
of sets {Int Qx : x ∈ Bi} covers Bi. Each set Bi is compact, so, by the H­B Theorem, 
there exists a finite subcover Int Q ≡ Int Qi,r , r = 1, . . . , Ni.xr 

The rectangles Qi,r , 1 ≤ r ≤ Ni, i = 1, 2, 3 . . . satisfy the hypotheses of the the­
orem, after relabeling the rectangles in linear sequence Q1, Q2, Q3, etc. (you should 
check this). 

The following theorem is called the Partition of Unity Theorem. 

Theorem 3.29. There exist functions fi ⊆ C0
∞(U) such that 

1.	 f1 ≥ 0, 

2.	 supp fi ⊆ Uα, for some α, 

3. For every p ∈ U , there exists a neighborhood Up of p such that Up ∪ supp fi = φ 
for all i > Np, 

4. fi = 1. 

Proof. Let Qi, i = 1, 2, 3, . . . be a collection of rectangles with the properties of the 
previous theorem. Then the functions fQi

, i = 1, 2, 3, . . . have all the properties 
presented in the theorem, except for property 4. We now prove the fourth property. 
We now that fQi 

> 0 on Int Qi, and {Int Qi : i = 1, 2, 3, . . . } is a cover of U . So, for 
every p ∈ U, fQi

(p) > 0 for some i. So 

fQi 
> 0.	 (3.167) 
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We can divide by a nonzero number, so we can define


fQifi = �∞ fQi 

. (3.168) 
i=1 

This new function satisfies property 4. Note that the infinite sum converges because 
the sum has only a finite number of nonzero terms. 
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Lecture 15

We restate the partition of unity theorem from last time. Let {Uα : α ∈ I} be a 

collection of open subsets of Rn such that 

 
U = Uα. (3.169) 

α∈I 

Theorem 3.30. There exist functions fi ⊆ C0
∞(U) such that 

1. f1 ≥ 0, 

2. supp fi ⊆ Uα, for some α, 

3. For every p ∈ U , there exists a neighborhood Up of p such that Up ∩ supp fi = φ 
for all i > Np, 

4. fi = 1. 

Remark. Property (4) makes sense because of property (3), because at each point 
it is a finite sum. 

Remark. A set of functions satisfying properties (1), (3), and (4) is called a partition 
of unity. 

Remark. Property (2) can be restated as “the partition of unity is subordinate to 
the cover {Uα : α ∈ I}.” 

Let us look at some typical applications of partitions of unity.

The first application is to improper integrals. Let φ : U R be a continuous
→

map, and suppose 

φ (3.170) 
U 

is well­defined. Take a partition of unity fi = 1. The function fiφ is continuous 
and compactly supported, so it bounded. Let supp fi ⊆ Qi for some rectangle Qi. 
Then, 

fiφ (3.171) 
Qi 

is a well­defined R. integral. It follows that 

fiφ = fiφ. (3.172) 
U Qi 

It follows that � ∞ � 
φ = fiφ. (3.173) 

U i=1 Qi 

This is proved in Munkres. 
The second application of partitions of unity involves cut­off functions. 
Let fi ∈ C0

∞(U), i = 1, 2, 3, . . . be a partition of unity, and let A ⊆ U be compact. 
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Lemma 3.31. There exists a neighborhood U � of A in U and a number N > 0 such 
that A ∪ supp fi = φ for all i > N . 

Proof. For any p ∈ A, there exists a neighborhood Up of p and a number Np such 
that U � ∪ supp fi = φ for all i > Np. The collection of all these Up is a cover of A. 
By the H­B Theorem, there exists a finite subcover Upi

, i = 1, 2, 3, . . . of A. Take 
Up = ∪Upi 

and take N = max{Npi
}. 

We use this lemma to prove the following theorem. 

Theorem 3.32. Let A ⊆ Rn be compact, and let U be an open set containing A. 
There exists a function f ∈ C0

∞(U) such that f ≡ 1 (identically equal to 1) on a 
neighborhood U � ⊂ U of A. 

Proof. Choose U � and N as in the lemma, and let 

N

f = fi. (3.174) 
i=1 

Then supp fi ∩ U � = φ for all i > N . So, on U �, 

∞

f = fi = 1. (3.175) 
i=1 

Such an f can be used to create cut­off functions. We look at an application. 
Let φ : U R be a continuous function. Define ψ = fφ. The new function →

ψ is called a cut­off function, and it is compactly supported with supp φ ⊆ U . We 
can extend the domain of ψ by defining ψ = 0 outside of U . The extended function 
ψ : Rn R is still continuous, and it equals φ on a neighborhood of A.→

We look at another application, this time to exhaustion functions. 

Definition 3.33. Given an open set U , and a collection of compact subsets Ai i = 
1, 2, 3, . . . of U , the sets Ai form an exhaustion of U if Ai ⊆ Int Ai+1 and ∪Ai = U 
(this is just a quick reminder of the definition of exhaustion). 

Definition 3.34. A function φ ∈ C∞(U) is an exhaustion function if 

1. φ > 0, 

2. the sets Ai = φ−1([0, 1]) are compact. 

Note that this implies that the Ai
�s are an exhaustion. 
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We use the fact that we can always find a partition of unity to show that we can 
always find exhaustion functions. 

Take a partition of unity fi ∈ C∞(U), and define 

∞

φ = ifi. (3.176) 
i=1 

This sum converges because only finitely many terms are nonzero. 
Consider any point 

 

p /∈ supp fj. (3.177) 
j≤i 

Then, 

∞� 
1 = fk(p) 

k=1� (3.178) 
= fk(p), 

k>i 

so 

∞� � 
�f�(p) = �f� 

�=1 �>i 

≥ i 
� 

f� 
(3.179) 

�>i 

= i. 

That is, if p /∈ ∪j≤i supp fj, then f(p) > i. So, 

 
φ−1([0, i]) ⊆ supp fj, (3.180) 

j≤i 

which you should check yourself. The compactness of the r.h.s. implies the compact­
ness of the l.h.s. 

Now we look at problem number 4 in section 16 of Munkres. Let A be an arbitrary 
subset of Rn, and let g : A Rk be a map. →

Definition 3.35. The function g is Ck on A if for every p ∈ A, there exists a 
neighborhood Up of p in Rn and a Ck map gp : Up → Rk such that gp Up∩A = g Up∩A.| |

Theorem 3.36. If g : A → Rk is Ck, then there exists a neighborhood U of A in Rn 

and a Ck map g̃ : U Rk such that g̃ = g on A.→

Proof. This is a very nice application of partition of unity. Read Munkres for the 
proof. 
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Lecture 16


4 Multi­linear Algebra 

4.1 Review of Linear Algebra and Topology 

In today’s lecture we review chapters 1 and 2 of Munkres. Our ultimate goal (not 
today) is to develop vector calculus in n dimensions (for example, the generalizations 
of grad, div, and curl). 

Let V be a vector space, and let vi ∈ V, i = 1, . . . , k. 

1. The vi
�s are linearly independent if the map from Rk to V mapping (c1, . . . , ck) 

to c1v1 + . . .+ ckvk is injective. 

2. The vi
�s span V if this map is surjective (onto). 

3. If the vi
�s form a basis, then dim V = k. 

4. A subset W of V is a subspace if it is also a vector space. 

5. Let V and W be vector spaces. A map A : V → W is linear if A(c1v1 + c2v2) = 
c1A(v1) + c2A(v2). 

6. The kernel of a linear map A : V W is→ 

ker A = {v ∈ V : Av = 0}. (4.1) 

7. The image of A is 
Im A = {Av : v ∈ V }. (4.2) 

8. The following is a basic identity: 

dim ker A+ dim Im A = dim V. (4.3) 

9. We can associate linear mappings with matrices. Let v1, . . . , vn be a basis for 
V , and let w1, . . . , wm be a basis for W . Let


m


Avj = aijwj. (4.4) 
i=1 

Then we associate the linear map A with the matrix [aij]. We write this A ∼
[aij]. 

10.	 If v1, . . . , vn is a basis for V and uj = aijwj are n arbitrary vectors in W , 
then there exists a unique linear mapping A : V → W such that Avj = uj. 
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11.	 Know all the material in Munkres section 2 on matrices and determinants. 

12.	 The quotient space construction. Let V be a vector space and W a subspace. 
Take any v ∈ V . We define v + w : w ∈ W}. Sets of this form arev + W ≡ {
called W ­cosets. One can check that given v1 + W and v2 + W , 

(a)	 If v1 − v2 ∈ W , then v1 + W = v2 + W . 

(b) If v1 − v2 /∈ W , then (v1 + W ) ∩ (v2 + W ) = φ. 

So every vector v ∈ V belongs to a unique W ­coset. 

The quotient space V/W is the set of all W=cosets. 

For example, let V = R2, and let W = {(a, 0) : a ∈ R}. The W ­cosets are then 
vertical lines. 

The set V/W is a vector space. It satisfies vector addition: (v1+W )+(v2+W ) = 
(v1 + v2) + W . It also satisfies scaler multiplication: λ(v + W ) = λv + W . You 
should check that the standard axioms for vector spaces are satisfied. 

There is a natural projection from V to V/W : 

π : V → V/W, v → v + W.	 (4.5) 

The map π is a linear map, it is surjective, and ker π = W . Also, Im π = V/W , 
so 

dim V/W = dim Im π 

= dim V − dim ker π	 (4.6) 

= dim V − dim W. 

4.2 Dual Space 

13.	 The dual space construction: Let V be an n­dimensional vector space. Define 
V ∗ to be the set of all linear functions � : V → R. Note that if �1, �2 ∈ V ∗ and 
λ1, λ2 ∈ R, then λ1�1 + λ2�2 ∈ V ∗, so V ∗ is a vector space. 

What does V ∗ look like? Let e1, . . . , en be a basis of V . By item (9), there 
exists a unique linear map e∗ 

i ∈ V ∗ such that 

e∗ 
i (ei) = 1, 
e∗ 
i (ej) = 0, if j =� i. 

Claim. The set of vectors e∗ 
1, . . . , e

∗ is a basis of V ∗.n 

Proof. Suppose � = ciei 
∗ = 0. Then 0 = �(ej) = ciei 

∗(ej) = cj, so c1 = 
. . . = cn = 0. This proves that the vectors e∗ 

i are linearly independent. Now, 
if � ∈ V ∗ and �(ei) = cj one can check that � = cie

∗. This proves that the i 

vectors ei 
∗ span V ∗. 
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The vectors e∗ 
1, . . . , e

∗ are said to be a basis of V ∗ dual to e1, . . . , en.n 

Note that dim V ∗ = dim V . 

Suppose that we have a pair of vectors spaces V,W and a linear map A : V →
W . We get another map 

A∗ : W ∗ V ∗, (4.7) → 

defined by A∗� = � ◦ A, where � ∈ W ∗ is a linear map � : W R. So A∗� is a →
linear map A∗� : V R. You can check that A∗ : W ∗ V ∗ is linear. → → 

We look at the matrix description of A∗. Define the following bases: 

e1, . . . , en a basis of V (4.8) 

f1, . . . , fn a basis of W (4.9) 

1, . . . , e
∗ a basis of V ∗ (4.10) e∗ 
n 

f1 
∗, . . . , f ∗ a basis of W ∗. (4.11) n 

Then 

A∗fj
∗(ei) = fj

∗(Aei) 

= fj
∗( akifk) (4.12) 

k 

= aji 

So, � 
A∗fj = ajke

∗ 
k, (4.13) 

k 

which shows that A∗ ∼ [aji] = [aij]
t, the transpose of A. 
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Lecture 17

Today we begin studying the material that is also found in the Multi­linear Algebra 

Notes. We begin with the theory of tensors. 

4.3 Tensors 

Let V be a n­dimensional vector space. We use the following notation. 

Notation. 
V k = V × · · · × V . (4.14) 

k times 

For example, 

V 2 = V × V, (4.15) 

V 3 = V × V × V. (4.16) 

Let T : V k R be a map. →

Definition 4.1. The map T is linear in its ith factor if for every sequence vj ∈ V, 1 ≤
j ≤ n, j = i, the function mapping v ∈ V to T (v1, . . . , vi−1, v, vi+1, . . . , vk) is linear in 
v. 

Definition 4.2. The map T is k­linear (or is a k­tensor) if it is linear in all k factors. 

Let T1, T2 be k­tensors, and let λ1, λ2 ∈ R. Then λ1T1 + λ2T2 is a k­tensor (it is 
linear in all of its factors). 

So, the set of all k­tensors is a vector space, denoted by Lk(V ), which we sometimes 
simply denote by Lk . 

Consider the special case k = 1. The the set L1(V ) is the set of all linear maps 
� : V R. In other words, →

1L (V ) = V ∗. (4.17) 

We use the convention that 
0L (V ) = R. (4.18) 

Definition 4.3. Let Ti ∈ Lki , i = 1, 2, and define k = k1 + k2. We define the tensor 
product of T1 and T2 to be the tensor T1 ⊗ T2 : V

k R defined by →

T1 ⊗ T2(v1, . . . , vk) = T1(v1, . . . , vk1)T2(vk1+1, . . . , vk). (4.19) 

We can conclude that T1 ⊗ T2 ∈ Lk . 
We can define more complicated tensor products. For example, let Ti ∈ Lki , i = 

1, 2, 3, and define k = k1 + k2 + k3. Then we have the tensor product 

T1 ⊗ T2 ⊗ T3(v1, . . . , vk) 

= T1(vi, . . . , vk1)T2(vk1+1, . . . , vk1+k2)T3(vk1+k2+1, . . . , vk). (4.20) 
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Then T1 ⊗ T2 ⊗ T3 ∈ Lk . Note that we could have simply defined 

T1 ⊗ T2 ⊗ T3 = (T1 ⊗ T2)⊗ T3 
(4.21) 

= T1 ⊗ (T2 ⊗ T3), 

where the second equality is the associative law for tensors. There are other laws, 
which we list here. 

•	 Associative Law: (T1 ⊗ T2)⊗ T3 = T1 ⊗ (T2 ⊗ T3). 

•	 Right and Left Distributive Laws: Suppose Ti ∈ Lki , i = 1, 2, 3, and assume 
that k1 = k2. Then 

–	 Left: (T1 + T2)⊗ T3 = T1 ⊗ T3 + T2 ⊗ T3. 

– Right: T3 ⊗ (T1 + T2) = T3 ⊗ T1 + T3 ⊗ T2.


Let λ be a scalar. Then
• 

λ(T1 ⊗ T2) = (λT1)⊗ T2 = T1 ⊗ (λT2).	 (4.22) 

Now we look at an important class of k­tensors. Remember that L1(V ) = V ∗, 
and take any 1­tensors �i ∈ V ∗, i = 1, . . . , k. 

Definition 4.4. The tensor T = �1 ⊗ · · · ⊗ �k is a decomposable k­tensor. 

By definition, T (v1, . . . , vk) = �1(v1) . . . �k(vk). That is, �1 ⊗ · · · ⊗ �k(v1, . . . , vk) = 
�1(v1) . . . �k(vk). 

Now let us go back to considering Lk = Lk(V ). 

Theorem 4.5. 
kdim Lk = n . (4.23) 

Note that for k = 1, this shows that L1(V ) = V ∗ has dimension n. 

Proof. Fix a basis e1, . . . , en of V . This defines a dual basis ei 
∗, . . . , e∗ of V ∗, e∗ 

i : Vn →
R defined by 

1 if i = j, 
e∗ 
i (ej) =	 (4.24) 

0 if i = j. 

Definition 4.6. A multi­index I of length k is a set of integers (i1, . . . , ik), 1 ≤ ir ≤ n. 
We define 

k .	 (4.25) e∗ 
I = ei

∗ 
1 
⊗ · · · ⊗ ei

∗ 
k 
∈ L


Let J = (j1, . . . , jk) be a multi­index of length k. Then


eI
∗(ej1 , . . . , ejk) = e∗ (ej1) . . . e

∗ 
ik 

(ejk 
) =

1 if I = J, 
(4.26) i1 0 if I = J. 
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Claim. The k­tensors e∗ are a basis of Lk .I 

Proof. To prove the claim, we use the following lemma. 

Lemma 4.7. Let T be a k­tensor. Suppose that T (ei1 , . . . , eik) = 0 for all multi­
indices I. Then T = 0. 

Proof. Define a (k − 1)­tensor Ti : V
k−1 R by setting →

Ti(v1, . . . , vk−1) = T (v1, . . . , vk−1, ej), (4.27) 

and let vk = aiei. By linearity, T (v1, . . . , vk) = aiTi(v1, . . . , vk−1). So, if the 
lemma is true for the Ti’s, then it is true for T by an induction argument (we leave 
this to the student to prove). 

With this lemma we can prove the claim.

First we show that the e∗ 

I ’s are linearly independent. Suppose that


0 = T = cIeI
∗. (4.28) 

For any multi­index J of length k, 

0 = T (ej1 , . . . , ejk) 

= cIeI
∗(ej1 , . . . , ejk) (4.29) 

= cJ 

= 0. 

So the e∗ 
I ’s are linearly independent. 

kNow we show that the eI
∗’s span L . Let k . For every I let TI =T ∈ L

T (ei1 , . . . , eil), and let T � = TIeI
∗. One can check that (T −T �)(ej1 , . . . , ejk 

) = 0 for 
all multi­indices J . Then the lemma tells us that T = T �, so the eI

∗’s span Lk, which 
proves our claim. 

Since the e∗’s are a basis of Lk, we see that I

kdim Lk = n , (4.30) 

which proves our theorem. 
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4.4 Pullback Operators 

Let V,W be vector spacers, and let A : V → W be a linear map. Let T ∈ Lk(W ), 
and define a new map A∗T ∈ Lk(V ) (called the “pullback” tensor) by 

A∗T (v1, . . . , vk) = T (Av1, . . . , Avk). (4.31) 

You should prove the following claims as an exercise: 

Claim. The map A∗ : L k(V ) is a linear map. k(W ) → L

Claim. Let Ti ∈ Lki(W ), i = 1, 2. Then 

A∗(T1 ⊗ T2) = A∗T1 ⊗ A∗T2. (4.32) 

Now, let A : V → W and B : W → U be maps, where U is a vector space. Given 
k(U), we can “pullback” to W by B∗T , and then we can “pullback” to V by T ∈ L

A∗(B∗T ) = (B A)∗T .◦

4.5 Alternating Tensors 

In this course we will be restricting ourselves to alternating tensors. 

Definition 4.8. A permutation of order k is a bijective map 

σ : {1, . . . , k} → {1, . . . , k}. (4.33) 

The map is a bijection, so σ−1 exists. 
Given two permutations σ1, σ2, we can construct the composite permutation 

σ1 ◦ σ2(i) = σ1(σ2(i)). (4.34) 

We define 
Sk ≡ The set of all permutations of {1, . . . , k}. (4.35) 

There are some special permutations. Fix 1 ≤ i < j ≤ k. Let τ be the permutation 
such that 

τ(i) = j (4.36) 

τ(j) = i (4.37) 

τ(�) = �, � = i, j. (4.38) 

The permutation τ is called a transposition. 

Definition 4.9. The permutation τ is an elementary transposition if j = i+ 1. 

We state without proof two very useful theorems. 
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Theorem 4.10. Every permutation can be written as a product σ = τ1 ◦ τm,τ2 ◦ · · · ◦
where each τi is an elementary transposition. 

Theorem 4.11. Every permutation σ can be written either as a product of an even 
number of elementary transpositions or as a product of an odd number of elementary 
transpositions, but not both. 

Because of the second theorem, we can define an important invariant of a permu­
tation: the sign of the permutation. 

Definition 4.12. If σ = τ1 ◦ · · · ◦ τm, where the τi’s are elementary transpositions, 
then the sign of σ is 

sign of σ = (−1)σ = (−1)m . (4.39) 

Note that if σ = σ1 ◦ σ2, then (−1)σ = (−1)σ1(−1)σ2 . We can see this by letting 
σ1 = τm1 , and σ2 = τ1

� ◦ · · · ◦ τ � , and noting that σ1 ◦ σ2 = τm1 ◦τ1 ◦ · · · ◦ m2
τ1 ◦ · · · ◦

τ � τ � .m21 ◦ · · · ◦
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Lecture 18

We begin with a quick review of permutations (from last lecture). 
A permutation of order k is a bijective map σ : {1, . . . , k} → {1, . . . , k}. We 

denote by Sk the set of permutations of order k. 
The set Sk has some nice properties. If σ ∈ Sk, then σ−1 ∈ Sk. The inverse 

permutation σ−1 is defined by σ−1(j) = i if σ(i) = j. Another nice property is that 
if σ, τ ∈ Sk, then στ ∈ Sk, where στ(i) = σ(τ(i)). That is, if τ(i) = j and σ(j) = k, 
then στ(i) = k. 

Take 1 ≤ i < j ≤ k, and define 

τi,j (i) = j (4.40) 

τi,j (j) = i (4.41) 

τi,j (�) = �, � �= i, j. (4.42) 

The permutation τi,j is a transposition. It is an elementary transposition of j = i+1. 
Last time we stated the following theorem. 

Theorem 4.13. Every permutation σ can be written as a product 

σ = τ1τ2 τr, (4.43) · · ·

where the τi’s are elementary transpositions. 

In the above, we removed the symbol ◦ denoting composition of permutations, 
but the composition is still implied. 

Last time we also defined the sign of a permutation 

Definition 4.14. The sign of a permutation σ is (−1)σ = (−1)r, where r is as in the 
above theorem. 

Theorem 4.15. The above definition of sign is well­defined, and 

(−1)στ = (−1)σ(−1)τ . (4.44) 

All of the above is discussed in the Multi­linear Algebra Notes. 
Part of today’s homework is to show the following two statements: 

1. |Sk| = k!. The proof is by induction. 

2. (−1)τi,j = −1. Hint: use induction and τi,j = (τj−1,j)(τi,j−1)(τj−1,j), with i < j. 

We now move back to the study of tensors. Let V be an n­dimensional vector 
space. We define 

V k = V × · · · × V . (4.45) 

k factors 
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We define Lk(v) to be the space of all k­linear functions T : V k → R. If Ti ∈ Lki , i = 
1, 2, and k = k1 + k2, then T1 ⊗ T2 ∈ Lk . Decomposable k­tensors are of the form 
T = �1 ⊗ · · · ⊗ �k, where each �i ∈ L1 = V ∗. Note that �1 ⊗ · · · ⊗ �k(v1, . . . , vk) = 
�1(v1) . . . �k(vk). 

We define a permutation operation on tensors. Take σ ∈ Sk and T ∈ Lk(V ). 

Definition 4.16. We define the map T σ : V k R by →

T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)). (4.46) 

Clearly, T σ ∈ Lk(V ). We have the following useful formula: 

Claim. 
T τσ (T σ)τ = . (4.47) 

Proof. 

T τσ(v1, . . . , vk) = T (vσ−1(τ−1(1)), . . . , vσ−1(τ−1(k))) 

= T σ(vτ−1(1), . . . , vτ−1(k)) (4.48) 

= (T σ)τ (v1, . . . , vk). 

Let us look at what the permutation operation does to a decomposable tensor 
T = �1 ⊗ · · · ⊗ �k. 

T σ(v1, . . . , vk) = �1(vσ−1(1)) . . . �k(vσ−1(k)). (4.49) 

The ith factor has the subscript σ−1(i) = j, where σ(j) = i, so the the ith factor is 
�σ(j)(vj). So 

T σ(v1, . . . , vk) = �σ(1)(v1) . . . �σ(k)(vk) 
(4.50) 

= (�σ(1) ⊗ · · · ⊗ �σ(k))(v1, . . . , vk). 

To summarize, � 
T = 

�σ(1) ⊗ · · · ⊗ �σ(k). 
(4.51) 

�1 ⊗ · · · ⊗ �k 
T σ = 

Proposition 4.17. The mapping T ∈ Lk T σ ∈ Lk is linear. →

We leave the proof of this as an exercise. 

Definition 4.18. A tensor T ∈ Lk(V ) is alternating if T σ = (−1)σT for all σ ∈ Sk. 

Definition 4.19. We define 

k(V ) = the set of all alternating k­tensors. (4.52) A
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By our previous claim, Ak is a vector space.

The alternating operator Alt can be used to create alternating tensors.


Definition 4.20. Given a k­tensor k(V ), we define the alternating operator T ∈ L
Alt : Lk(V ) → Ak(V ) by 

Alt (T ) = (−10)τT τ . (4.53) 
τ∈Sk 

Claim. The alternating operator has the following properties: 

1. Alt (T ) ∈ Ak(V ), 

2. If T ∈ Ak(V ), then Alt (T ) = k!T , 

3. Alt (T σ) = (−1)σ Alt (T ), 

4. The map Alt : Lk(V ) → Ak(V ) is linear. 

Proof. 1. � 
Alt (T ) = (−1)τT τ , (4.54) 

τ 

so 

Alt (T )σ = (−1)τ (T τ )σ 

τ 

= (−1)τT στ 

τ (4.55) 

= (−1)σ (−1)στT στ 

στ 

= (−1)σ Alt (T ). 

2. � 
Alt (T ) = (−1)τT τ , (4.56) 

τ 

but T τ = (−1)τT , since T ∈ Ak(V ). So 

Alt (T ) = (−1)τ (−1)τT 
τ (4.57) 

= k!T. 

3. 

Alt (T σ) = (−1)τ (T σ)τ 

τ 

= (−1)τT τσ 

τ (4.58) 

= (−1)σ (−1)τσT τσ 

τσ 

= (−1)σ Alt (T ). 
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4. We leave the proof as an exercise. 

Now we ask ourselves: what is the dimension of Ak(V )? To answer this, it is best 
to write a basis. 

Earlier kwe found a basis for L
to be a basis of V ∗

. We defined e1, . . . , en to be a basis of V and 
∗ 
n 

∗, . . . , e1 . We then considered multi­indices I =
(i1, . . . , ik), 1 ≤
, I a multi­index} to be a basis of Lk For 

e

ir ≤ n and defined {e
any multi­index J = (j1, . . . , jk), we had 

∗ ⊗ · · · ⊗ ei1 
∗ 
I 

∗ 
ik

= e . 

1 if I = J , 
(4.59) ∗( )e , . . . , ej jI 1 k

e
 = 
0 if I = J . 

Definition 4.21. A multi­index I = (i1, . . . , ik) is repeating if ir = is for some r < s. 

Definition 4.22. The multi­index I is strictly increasing if 1 ≤ i1 < . . . < ik ≤ n. 

Notation. Given σ ∈ Sk and I = (i1, . . . , ik), we denote Iσ = (iσ(1), . . . , iσ(k)). 

Remark. If J is a non­repeating multi­index, then there exists a permutation σ such 
that J = Iσ, where I is strictly increasing. 

σ∗)I .
 (4.60)
∗eJ 
∗ 

σI = e
 ∗ 
σ(i )k

∗ ⊗ · · · ⊗ eσ(i )1
=
(e
= e


∗).IDefine ψI = Alt (e

Theorem 4.23. 1. ψIσ = (−1)σψI , 

2. If I is repeating, then ψI = 0, 

3. If I, J are strictly increasing, then � 

ψI(ej1 , . . . , ejk) = 
1 

0 

if I = J , 

if I �= J . 
(4.61) 

Proof. 1. 

∗ 
σIψIσ = Alt e

σ∗)IAlt ((e )= 
(4.62) 

= (−1)σ Alt e

= (−1)σψI . 

∗ 
I 

2. Suppose that I is repeating. Then I = Iτ for some transposition τ . So ψI = 
(−1)τψI . But (as you proved in the homework) (−1)τ = −1, so ψI = 0. 
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3. 

ψI = Alt (e∗)I
(4.63) = (−1)τ e

τ 

so � 

∗ ,τI

ψI(ej1 , . . . , ejk) = (−1)τ e∗ ( )e , . . . , ej jτI 1 k
(4.64) 

τ 8 >< >: 

1 if Iτ = J, 

0 if Iτ = J . 

But Iτ = J only if τ is the identity permutation (because both Iτ and J are 
strictly increasing). The only non­zero term in the sum is when τ is the identity 
permutation, so 

1 if I = J ,
ψI(ej1 , . . . , ejk) = (4.65) 

0 if I = J . 

Corollary 5. The alternating k­tensors ψI , where I is strictly increasing, are a basis 
of Ak(V ). 

Proof. Take T ∈ Ak(V ). The tensor T can be expanded as T ∗.I So= cIe

Alt (T ) = k! cI Alt (e∗)I
(4.66) 

= k! cIψI . 

If I is repeating, then ψI = 0. If I is non­repeating, then I = Jσ, where J is strictly 
increasing. Then ψI = (−1)σψJ . 

So, we can replace all multi­indices in the sum by strictly increasing multi­indices, 

T = aIψI , I’s strictly increasing. (4.67) 

Therefore, the ψI ’s span Ak(V ). Moreover, the ψI ’s are a basis if and only if the ai’s 
are unique. We show that the aI ’s are unique. 

Let J be any strictly increasing multi­index. Then 

T (ej1 , . . . , ejk) = aIψ(ej1 , . . . , ejk) 
(4.68) 

= aJ , 

by property (3) of the previous theorem. Therefore, the ψI ’s are a basis of Ak(V ). 
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Lecture 19

We begin with a review of tensors and alternating tensors.

We defined Lk(V ) to be the set of k­linear maps T : V k R. We defined
→ 

1, . . . , e
∗e1, . . . , en to be a basis of V and e∗ 
n to be a basis of V ∗. We also defined 

ke∗ 
I = e∗ 

i1 
⊗ · · · ⊗ e∗ 

ik 
} to be a basis of L (V ), where I = (i1, . . . , ik), 1 ≤ ir ≤ n is a {

kmulti­index. This showed that dim Lk = n . 
and T ∈ LkWe defined the permutation operation on a tensor. For σ ∈ Sn , we 

defined T σ ∈ Lk by T σ(v1, . . . , vk) = T (vσ−1(1), . . . , vσ−1(k)). Then we defined that 
T is alternating if T σ = (−1)σT . We defined Ak = Ak(V ) to be the space of all 
alternating k­tensors. � 

We defined the alternating operator Alt : Lk → Ak by Alt (T ) = (−1)σT σ, and 
we defined ψI = Alt (e∗ 

I), where I = (i1, . . . , ik) is a strictly increasing multi­index. 
We proved the following theorem: 

Theorem 4.24. The ψI ’s (where I is strictly increasing) are a basis for Ak(V ). 

Corollary 6. If 0 ≤ k ≤ n, then 

n n! 
dim Ak = = 

k!(n− k)! 
.	 (4.69) 

k 

Corollary 7. If k > n, then Ak = .{0}

We now ask what is the kernel of Alt ? That is, for which T ∈ Lk is Alt (T ) = 0? 
Let T ∈ Lk be a decomposable k­tensor, T = �1 ⊗ · · · ⊗ �k, where each �i ∈ V ∗. 

Definition 4.25. The k­tensor T is redundant if �i = �i+1 for some 1 ≤ i ≤ k − 1. 

We define 
k ≡ Span { redundant k­tensors }.	 (4.70) I

Claim.	 If T ∈ Ik, then Alt (T ) = 0. 

Proof. It suffices to prove this for T = �1 ⊗· · ·⊗ �k, where �1 = �i+1 (T is redundant). 
Let τ = τi,i+1 ∈ Sk. So, T τ = T . But 

Alt (T τ )	= (−1)τ Alt (T ) 
(4.71) 

= −Alt (T ), 

so Alt (T ) = 0. 

Claim.	 Suppose that T ∈ Ik and T � ∈ Lm . Then T � k+n and T ⊗ T � .⊗ T ∈ I	 ∈ Ik+m 
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Proof. We can assume that T and T � are both decomposable tensors. 

T = �1 ⊗ · · · ⊗ �k, �i = �i+1, (4.72) 

T � = �� �
m, (4.73) 1 ⊗ · · · ⊗ �

T ⊗ T � = � � (4.74) m�1 ⊗ · · · ⊗ ��i ⊗���i+1 ⊗ · · · ⊗ �k ⊗ �1 ⊗ · · · ⊗ �

a redundancy 

k+m . (4.75) ∈ I

A similar argument holds for T � ⊗ T . 

Claim. For each T ∈ Lk and σ ∈ Sk, there exists some w ∈ Ik such that 

T = (−1)σT σ + W. (4.76) 

Proof. In proving this we can assume that T is decomposable. That is, T = �1 ⊗· · ·⊗ 
�k. 

We first check the case k = 2. Let T = �1 ⊗ �2. The only (non­identity) permuta­
tion is σ = τ1,2. In this case, T = (−1)σT σ + W becomes W = T + T σ, so 

W = T + T σ 

= �1 ⊗ �2 + �2 ⊗ �1 
(4.77) 

= (�1 + �2)⊗ (�1 + �2)− �1 ⊗ �1 − �2 ⊗ �2 
2 .∈ I

We now check the case k is arbitrary. Let T = �1⊗· · ·⊗�k and σ = τ1τ2 . . . τr ∈ Sk, 
where the τi’s are elementary transpositions. We will prove that W ∈ Ik by induction 
on r. 

• Case r = 1: Then σ = τi,i+1, and 

W = T + T σ 

= (�1 ⊗ · · · ⊗ �k) + (�1 ⊗ · · · ⊗ �k)
σ 

(4.78) 
= �1 ⊗ · · · ⊗ �i−1 ⊗ (�i ⊗ �i+1 + �i+1 ⊗ �i)⊗ �i+2 ⊗ · · · ⊗ �k 

k ,∈ I

because (�i ⊗ �i+1 + �i+1 ⊗ �i) ∈ Ik . 

• Induction step ((r − 1) = ⇒ r): Let β = τ2 . . . τr, and let τ = τ1 so that 
σ = τ1τ2 . . . τr = τβ. Then 

T σ = (T β)τ . (4.79) 

By induction, we know that 

T β = (−1)βT + W, (4.80) 
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for some W ∈ Ik . So, 

T σ = (−1)βT τ + W τ 

= (−1)β(−1)τT + W τ (4.81) 

= (−1)σT + W τ , 

kwhere W τ = (−1)τW + W � .∈ I

Corollary 8. For every T ∈ Lk , 

Alt (T ) = k!T + W (4.82) 

for some W ∈ Ik . 

Proof. � 
Alt (T ) = (−1)σT σ , (4.83) 

σ 

kbut we know that T σ = (−1)σT + Wσ, for some Wσ ∈ I , so 

Alt (T ) = (T + (−1)σWσ) 
σ (4.84) 

= k!T + W, 

kwhere W = σ(−1)σWσ ∈ I .


Theorem 4.26. Every T ∈ Lk can be written uniquely as a sum


T = T1 + T2, (4.85) 

kwhere T1 ∈ Ak and T2 ∈ I . 

Proof. We know that Alt (T ) = k!T + W , for some W ∈ Ik . Solving for T , we get 

1 1 
T = Alt (T ) W . (4.86) �k! −

k!�� � � �� � 
T1 T2 

We check uniqueness: 
Alt (T ) = Alt (T1) + Alt (T2), (4.87) � �� � � �� � 

k!T1 0 

so T1 is unique, which implies that T2 is also unique. 

Claim. 
k = ker Alt . (4.88) I
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Proof. If Alt T = 0, then 
1 
W, W ∈ IkT = , (4.89) −

k! 

so T ∈ Ik . 

The space Ik is a subspace of Lk, so we can form the quotient space 

k kΛk(V ∗) ≡ L /I . (4.90) 

What’s up with this notation Λk(V ∗)? We motivate this notation with the case k = 1. 
1There are no redundant 1­tensors, so I1 = {0}, and we already know that L = V ∗. 

So 
1 1Λ1(V ∗) = V ∗/I = L = V ∗. (4.91) 

k/IkDefine the map π : Lk . The map π is onto, and ker π = Ik .→ L

Claim. The map π maps Ak bijectively onto Λk(V ∗). 

Proof. Every element of Λk is of the form π(T ) for some T ∈ Lk . We can write 
kT = T1 + T2, where T1 ∈ Ak and T2 ∈ I . So, 

π(T ) = π(T1) + π(T2) 

= π(T1) + 0 (4.92) 

= π(T1). 

So, π maps Ak onto Λk . Now we show that π is one­to­one. If T ∈ Ak and π(T ) = 0, 
k kthen T ∈ Ik as well. We know that A = {0}, so π is bijective. ∩ I

We have shown that 
kA = Λk(V ∗). (4.93) 

The space Λk(V ∗) is not mentioned in Munkres, but sometimes it is useful to look at 
the same space in two different ways. 

(V ) ∼

79 



� �� � 

Lecture 20

We begin with a review of last lecture.

Consider a vector space V . A tensor T ∈ Lk is decomposable if T = �
1 ⊗ · · · ⊗ 

�k, �i ∈ L1 = V ∗. A decomposable tensor T is redundant of �i = �i+1 for some i. We 
define 

k k= (V ) = Span { redundant k­tensors }. (4.94) I I
Because Ik k, we can take the quotient space ⊆ L

k kΛk = Λk(V ∗) = L /I , (4.95) 

defining the map 
π : Lk Λk → . (4.96) 

We denote by Ak(V ) the set of all alternating k­tensors. We repeat the main theorem 
from last lecture: 

Theorem 4.27. The map π maps Ak bijectively onto Λk . So, Ak ∼ Λk .= 

It is easier to understand the space Ak, but many theorems are much simpler 
when using Λk . This ends the review of last lecture. 

4.6 Wedge Product 

Now, let T1 ∈ Ik1 and T k2 . Then T1⊗T2 and T2⊗T1 are in Ik, where k = k1+k2.2 ∈ L
The following is an example of the usefulness of Λk . 

Let µi ∈ Λki , i = 1, 2. So, µi = π(Ti) for some Ti ∈ Lki . Define k = k1 + k2, so 
T1 ⊗ T k . Then, we define 2 ∈ L

π(T1 ⊗ T2) = µ1 ∧ µ2 ∈ Λk . (4.97) 

Claim. The product µi ∧ µ2 is well­defined. 

Proof. Take any tensors Ti
� ∈ Lki with π(Ti

�) = µi. We check that 

π(T1
� ⊗ T2

�) = π(T1 ⊗ T2). (4.98) 

We can write 

T � = T1 + W1, where W1 ∈ Ik1 , (4.99) 1 

T � = T2 + W2, where W2 ∈ Ik2 . (4.100) 2 

Then, 
T1
� ⊗ T2

� = T1 ⊗ T2 + W1 ⊗ T2 + T1 ⊗W2 + W1 ⊗W2, (4.101) 

∈Ik 

so 
µ1 ∧ µ2 ≡ π(T1

� ⊗ T2
�) = π(T1 ⊗ T2). (4.102) 
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This product (∧) is called the wedge product. We can define higher order wedge 
products. Given µi ∈ Λki , i = 1, 2, 3, where µ = π(Ti), we define 

µ1 ∧ µ2 ∧ µ3 = π(T1 ⊗ T2 ⊗ T3). (4.103) 

We leave as an exercise to show the following claim. 

Claim. 

µ1 ∧ µ2 ∧ µ3 = (µ1 ∧ µ2) ∧ µ3 
(4.104) 

= µ1 ∧ (µ2 ∧ µ3). 

Proof Hint: This triple product law also holds for the tensor product. 

We leave as an exercise to show that the two distributive laws hold: 

Claim. If k1 = k2, then 

(µ1 + µ2) ∧ µ3 = µ1 ∧ µ3 + µ2 ∧ µ3. (4.105) 

If k2 = k3, then 
µ1 ∧ (µ2 + µ3) = µ1 ∧ µ2 + µ1 ∧ µ3. (4.106) 

Remember that I1 = {0}, so Λ1 = Λ1/ 1 = 1 = L1(V ) = V ∗. That is,I L
Λ1(V ∗) = V ∗. 

Definition 4.28. The element µ ∈ Λk is decomposable if it is of the form µ = 
� k, where each �i ∈ Λ1 = V ∗.1 ∧ · · · ∧ �

That means that µ = π(�1 ⊗ k) is the projection of a decomposable k­tensor. ⊗�· · ·
Take a permutation σ ∈ Sk and an element ω ∈ Λk such that ω = π(T ), where 

.T ∈ Lk 

Definition 4.29. 
ωσ = π(T σ). (4.107) 

We need to check that this definition does not depend on the choice of T . 

Claim. Define ωσ = π(T σ). Then, 

1. The above definition does not depend on the choice of T , 

2. ωσ = (−1)σω. 

Proof. 1. Last lecture we proved that for T ∈ Lk , 

T σ = (−1)σT + W, (4.108) 

for some W ∈ Ik . Hence, if T ∈ Ik, then T σ ∈ Ik . If ω = π(T ) = π(T �), then 
k . Thus, (T �)σ − T σ ∈ Ik, so ωσ = π((T �)σ) = π(T σ).T � − T ∈ I
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2. 
T σ = (−1)σT + W, (4.109) 

for some W ∈ Ik, so 
π(T σ) = (−1)σπ(T ). (4.110) 

That is, 
ωσ = (−1)σω. (4.111) 

Suppose ω is decomposable, so ω = �1∧· · ·∧�k, �i ∈ V ∗. Then ω = π(�1∧· · ·∧�k), 
so 

ωσ = π((�1 ⊗ · · · ⊗ �k)
σ) 

= π(�σ(1) ⊗ · · · ⊗ �σ(k)) (4.112) 

= �σ(1) ∧ · · · ∧ �σ(k). 

Using the previous claim, 

= (−1)σ�1 ∧ · · · ∧ �k. (4.113) �σ(1) ∧ · · · ∧ �σ(k) 

For example, if k = 2, then σ = τ1,2. So, �2 ∧ �1 = −�1 ∧ �2. In the case k = 3, we 
find that 

(�1 ∧ �2) ∧ �3 = �1 ∧ (�2 ∧ �3) 
= −�1 ∧ (�3 ∧ �2) = −(�1 ∧ �3) ∧ �2 (4.114) 

= �3 ∧ (�1 ∧ �2). 

This motivates the following claim, the proof of which we leave as an exercise. 

Claim. If µ ∈ Λ2 and � ∈ Λ1, then 

µ ∧ � = � ∧ µ. (4.115) 

Proof Hint: Write out µ as a linear combination of decomposable elements of Λ2 . 

Now, suppose k = 4. Moving �3 and �4 the same distance, we find that 

(�1 ∧ �2) ∧ (�3 ∧ �4) = (�3 ∧ �4) ∧ (�1 ∧ �2). (4.116) 

The proof of the following is an exercise. 

Claim. If µ ∈ Λ2 and ν ∈ Λ2, then 

µ ∧ ν = ν ∧ µ. (4.117) 

We generalize the above claims in the following: 
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Claim. Left µ ∈ Λk and ν ∈ Λ� . Then 

µ ∧ ν = (−1)k�ν ∧ µ. (4.118) 

Proof Hint: First assume k is even, and write out µ as a product of elements all of 
degree two. Second, assume that k is odd. 

Now we try to find a basis for Λk(V ∗). We begin with 

e1, . . . , en a basis of V , (4.119) 

e∗ 
1, . . . , e

∗ a basis of V ∗, (4.120) n 

k e∗ 
I = e∗ 

i1 
⊗ · · · ⊗ e∗ , I = (i1, . . . , ik), 1 ≤ ir ≤ n, a basis of L , (4.121) ik

ψI = Alt (e∗ 
I), I’s strictly increasing, a basis of Ak(V ). (4.122) 

We know that π maps Ak bijectively onto Λk, so π(ψI), where I is strictly increasing, 
are a basis of Λk(V ∗). � 

ψI = Alt e∗ 
I = (−1)σ(eI

∗)σ . (4.123) 

So, 

π(ψI) = (−1)σπ((eI
∗)σ) 

= (−1)σ(−1)σπ(e∗ 
I) (4.124) 

= k!π(e∗ 
I) 

≡ k!ẽI . 

Theorem 4.30. The elements of Λk(V ∗) 

ẽ∗ e∗ , 1 ≤ i1 < . . . < ik ≤ n (4.125) iki1 
∧ · · · ∧ ˜

are a basis of Λk(V ∗). 

Proof. The proof is above. 

Let V,W be vector spaces, and let A : V → W be a linear map. We previously 
defined the pullback operator A∗ : Lk(W ) → Lk(V ). Also, given Ti ∈ Lki(W ), i = 
1, 2, we showed that A∗(T1 ⊗ T2) = A∗T1 ⊗A∗T2. So, if T = k(W ) is�1 ⊗ · · · ⊗ �k ∈ L
decomposable, then 

A∗T = A∗�1 ⊗ · · · ⊗ A∗�k, �i ∈ W ∗. (4.126) 

If �i = �i+1, then A∗�1 = A∗�i+1. This shows that if �1 ⊗ · · · ⊗ �k is redundant, then 
A∗(�1 ⊗ · · · ⊗ �k) is also redundant. So, 

kA∗ (V ). (4.127) I (W ) ⊆ Ik

Let µ ∈ Λk(W ∗), so µ = π(T ) for some k(W ). We can pullback to get T ∈ L
π(A∗T ) ∈ Λk(V ∗). 
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Definition 4.31. A∗µ = π(A∗T ). 

This definition makes sense. If µ = π(T ) = π(T �), then T � − T ∈ Ik(W ). So 
A∗T � − A∗T ∈ Ik(V ), which shows that A∗µ = π(A∗T �) = π(A∗T ). 

We ask in the homework for you to show that the pullback operation is linear and 
that 

A∗(µ1 ∧ µ2) = A∗µ1 ∧ A∗µ2. (4.128) 

84




Lecture 21

Let V,W be vector spaces, and let A : V → W be a linear map. We defined the 

pullback operation A∗ : W ∗ V ∗. Last time we defined another pullback operator →
having the form A∗ : Λk(W ∗) → Λk(V ∗). This new pullback operator has the following 
properties: 

1. A∗ is linear. 

2. If ωi ∈ Λk1(W ∗), i = 1, 2, then A∗ω1 ∧ ω2 = A∗ω1 ∧ ω2. 

3. If ω is decomposable, that is if ω = �1 ∧ · · · ∧ �k where �i ∈ W ∗, then A∗ω = 
A∗�1 ∧ · · · ∧ A∗�k. 

4. Suppose that U is a vector space and that B : W → U is a linear map. Then, 
for every ω ∈ Λk(U∗), A∗B∗ω = (BA)∗ω. 

4.7 Determinant 

Today we focus on the pullback operation in the special case where dim V = n. So, 
we are studying Λn(V ∗), which is called the nth exterior power of V . 

Note that dim Λn(V ∗) = 1. 
Given a linear map A : V → V , what is the pullback operator 

A∗ : Λn(V ∗) → Λn(V ∗)? (4.129) 

Since it is a linear map from a one dimensional vector space to a one dimensional 
vector space, the pullback operator A∗ is simply multiplication by some constant λA. 
That is, for all ω ∈ Λn(V ∗), A∗ω = λAω. 

Definition 4.32. The determinant of A is 

det(A) = λA. (4.130) 

The determinant has the following properties: 

1. If A = I is the identity map, then det(A) = det(I) = 1. 

2. If A,B are linear maps of V into V , then det(AB) = det(A) det(B).


Proof: Let ω ∈ Λn(V ∗). Then


(AB)∗ω = det(AB)ω 

= B∗(A∗ω) 

= B∗(det A)ω 
(4.131) 

= det(A) det(B)ω. 
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3. If A is onto, then det(A) = 0. 

Proof: Suppose that A : V V is onto. Then there exists an inverse linear → 
map A−1 : V V such that AA−1 = I. So, det(A) det(A−1) = 1. → 

4. If A is not onto, then det(A) = 0. 

Proof: Let W = Im (A). If A is not onto, then dim W < dim V . Let B : V W→
be the map A regarded as a map of V into W , and let ιW : W V be →
inclusion. So, A = ιW B. For all ω ∈ Λn(V ∗), A∗ω = B∗ι∗ ω. Note that W 

ι∗ ω ∈ Λn(W ∗) = {0} because dim W < n. So, A∗ω = B∗ι∗ = 0, which shows W W 

that det(A) = 0. 

Let W,V be n­dimensional vector spaces, and let A : V → W be a linear map. 
We have the bases 

e1, . . . , en basis of V , (4.132) 

1, . . . , e
∗ dual basis of V ∗, (4.133) e∗ 
n 

f1, . . . , fn basis of W, (4.134) 

f1 
∗, . . . , f ∗ dual basis of W ∗. (4.135) n 

We can write Aei = aijfj, so that A has the associated matrix A ∼ [aij]. Then 
A∗fj 

∗ = ajke
∗ 

n ∈ Λn(W ∗), which is a basis vector of Λn(W ∗).k. Take ω = f1 
∗ ∧· · ·∧f ∗ 

Let us compute its pullback: 

n n

n) = a1,k1e
∗ 

kn 
A∗(f1 

∗ ∧ · · · ∧ f ∗ 
k1 

∧ · · · ∧ an,kn e
∗ 

k1=1 kn=1 (4.136) 

= (a1,k1 . . . am,kn )e
∗ 

kn 
.k1 

∧ · · · ∧ e∗ 

k1,...,kn 

Note that if kr = ks, where r =� s, then e∗ 
kn 

= 0. If there are no repetitions, k1 
∧ · · · ∧ e∗ 

then there exists σ ∈ Sn such that ki = σ(i). Thus, 

n) = a1,σ(1) . . . an,σ(n)e
∗ 

σ(n)
A∗(f1 
∗ ∧ · · · ∧ f ∗ 

σ(1) ∧ · · · ∧ e∗


�σ � (4.137) 

= (−1)σ a1,σ(1) . . . an,σ(n) e∗ .n1 ∧ · · · ∧ e∗ 

σ 

Therefore, � 
det[aij] = (−1)σ a1,σ(1) . . . an,σ(n). (4.138) 

σ 

In the case where W = V and each ei = fi, we set ω = e∗ 
n, and we get 1 ∧ · · · ∧ e∗ 

A∗ω = det[aij]ω. So, det(A) = det[aij]. 
For basic facts about determinants, see Munkres section 2. We will use these 

results quite a lot in future lectures. We list some of the basic results below. 
Let A = [aij] be an n× n matrix. 
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1. det(A) = det(At). You should prove this as an exercise. You should explain the 
following steps: 

det(A) = (−1)σ a1,σ(1) . . . an,σ(n) 

σ 

= (−1)τ aτ(1),1 . . . aτ(n),n, where τ = σ−1 (4.139) 

τ 

= det(At). 

2. Let � � 
B C 

A =
0 D

, (4.140) 

where B is k × k, C is k × �, D is �× �, and n = k + �. Then 

det(A) = det(B) det(D) (4.141) 

4.8 Orientations of Vector Spaces 

Let � ⊆ R2 be a line through the origin. Then �−{0} has two connected components. 
An orientation of � is a choice of one of these components. 

More generally, given a one­dimensional vector space L, the set L has two con­
nected components. Choose . Then the two components are v ∈ L − {0}

{λv : λ ∈ R+} and {−λv : λ ∈ R+}. (4.142) 

Definition 4.33. An orientation of L is a choice of one of these components, usually 
labeled L+. We define 

v ∈ L+ ⇐⇒ v is positively oriented. (4.143) 

Let V be an n­dimensional vector space. Then Λn(V ∗) is a 1­dimensional vector 
space. 

Definition 4.34. An orientation of V is an orientation of Λn(V ∗). That is, a choice 
of Λn(V ∗)+. 

Suppose e1, . . . , en is a basis of V , so e∗ 
1, . . . , e

∗ is the dual basis of V ∗. Letn 

ω = e∗ .1 ∧ · · · ∧ e∗ 
n ∈ Λn(V ∗)− {0}

Definition 4.35. The basis e1, . . . , en is positively oriented if ω ∈ Λn(V ∗)+. 

Let f1, . . . , fn be another basis of V and f1 
∗, . . . , f ∗ its dual basis. Let w� = n � 

f ∗ . We ask: How is ω� related to ω? The answer: If fj = aijei, then n1 ∧ · · · ∧ f ∗ 

ω� = det[aij]ω. So, if e1, . . . , en is positively oriented, then f1, . . . , fn is positively 
oriented if and only if det[aij] > 0. 

Suppose V is an n­dimensional vector space and that W is a k­dimensional sub­
space of V . 
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Claim. If V and V/W are given orientations, then W acquires from these orienta­
tions a natural subspace orientation. 

Idea of proof: Let π : V → V/W be the canonical map, and choose a basis e1, . . . , en 
of V such that e�+1, . . . , en is a basis of W and such that π(e1), . . . , π(e�) is a basis of 
V/W , where � = n− k. 

Replacing e1 by −e1 if necessary, we can assume that π(e1), . . . , π(e�) is an oriented 
basis of V/W . Replacing en by −en if necessary, we can assume that e1, . . . , en is an 
oriented basis of V . Now, give W the orientation for which e�+1, . . . , en is an oriented 
basis of W . One should check that this choice of orientation for W is independent of 
the choice of basis (this is explained in the Multi­linear Algebra notes). 
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Lecture 22

In R3 we had the operators grad, div, and curl. What are the analogues in Rn ? 

Answering this question is the goal of today’s lecture. 

4.9 Tangent Spaces and k­forms 

Let p ∈ Rn . 

Definition 4.36. The tangent space of p in Rn is 

TpRn = { (p, v) : v ∈ Rn } . (4.144) 

RnWe identify the tangent space with via the identification 

�⏐⏐ 

TpRn = Rn (4.145) ∼

(p, v) → v. (4.146) 

according to the following diagram: 

⏐⏐� 

Via this identification, the vector space structure on Rn gives a vector space structure 
on TpRn . 

Let U be an open set in Rn , and let f : U → Rm be a C 1 map. Also, let p ∈ U 
and define q = f(p). We define a linear map 

dfp : TpRn Tq Rm (4.147) → 

TpRn dfp 
Tq Rm−−−→ 

=∼ =∼ (4.148)


Rn Df (p) −−−→ Rm . 

So, 
dfp(p, v) = (q,Df(p)v). (4.149) 

Definition 4.37. The cotangent space of Rn at p is the space 

Tp 
∗Rn ≡ (TpRn )∗, (4.150) 

which is the dual of the tangent space of Rn at p. 

Definition 4.38. Let U be an open subset of Rn . A k­form on U is a function ω 
which assigns to every point p ∈ U an element ωp of Λk (T ∗Rn ) (the kth exterior power p 

of T ∗Rn ).p 
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Let us look at a simple example. Let f ∈ C∞(U), p ∈ U , and c = f(p). The map 

dfp : TpRn TcR = R	 (4.151) →

is a linear map of TpRn into R. That is, dfp ∈ T ∗Rn . So, df is the one­form on Up 

which assigns to every p ∈ U the linear map 

dfp ∈ T ∗Rn = Λ1(Tp 
∗R).	 (4.152) p 

As a second example, let f, g ∈ C∞(U). Then gdf is the one­form that maps 

p ∈ U → g(p)dfp ∈ Λ1(T ∗Rn).	 (4.153) p 

As a third example, let f, g ∈ C∞(U). Then ω = df ∧ dg is the two­form that maps 

p ∈ U → dfp ∧ dgp.	 (4.154) 

Note that dfp, dgp ∈ T ∗R, so dfp ∧ dgp ∈ Λ2(T ∗Rn).p	 p 

As a fourth and final example, let f1, . . . , fk ∈ C∞(U). Then df1 ∧ · · · ∧ dfk is the 
k­form that maps 

p ∈ U (4.155) → (df1)p ∧ · · · ∧ (dfk)p. 

Note that each (dfi)p ∈ T ∗Rn, so (df1)p ∧ · · · ∧ (dfk)p ∈ Λk(T ∗Rn).p p 

Let us now look at what k­forms look like in coordinates. Let e1, . . . , dn be the 
standard basis of Rn . Let p ∈ U and let vi = (p, ei) for each i. Then, the vectors 
v1, . . . , vn are a basis of TpRn . 

Suppose we have a map f ∈ C∞(U). What is dfp(vi)? 

∂f 
dfp(vi) = Deif(p) = (p).	 (4.156) 

∂xi 

In particular, letting xi be the ith coordinate function, 

∂xi 1 if i = j,
(dxi)p(vj) = =	 (4.157) 

∂xj 0 if i = j. 

So, (dx1)p, . . . , (dxn)p is the basis of Tp 
∗Rn dual to v1, . . . , vn. 

For any f ∈ C∞(U), 

∂f 
dfp(vj) = (p)

∂xj � ∂f 
= (p)(dxi)p (vj)

∂xii	 (4.158) � ∂f 
= dfp = (p)(dxi)p⇒	

∂xi � ∂f 
= df = dxi.⇒ 

∂xi 
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Since (dx1)p, . . . , (dxn)p is a basis of T ∗Rn, the wedge products p 

(dxI)p = (dxi1)p ∧ · · · ∧ (dxik 
)p, 1 ≤ i1 < < ik ≤ n, (4.159) · · ·

(I strictly increasing) are a basis of Λk(Tp 
∗Rn). 

Therefore, any element wp of Λk(Tp 
∗Rn) can be written uniquely as a sum 

ωp = aI(p)(dxI)p, aI(p) ∈ R, (4.160) 

where the I’s are strictly increasing. Hence, any k­form can be written uniquely as a 
sum � 

ω = aIdxI , I strictly increasing, (4.161) 

where each aI is a real­valued function on U . That is, aI : U R.→

Definition 4.39. The k­form ω is Cr(U) if each aI ∈ Cr(U). 

Just to simplify our discussion, from now on we will always take k­forms that are 
C∞. 

Definition 4.40. We define 

Ωk(U) = the set of all C∞ k­forms. (4.162) 

So, ω ∈ Ωk(U) implies that ω = aIdxI , where aI ∈ C∞(U).

Let us now study some basic operations on k­forms.


1. Let ω ∈ Ωk(U) and let f ∈ C∞(U). Then fω ∈ Ωk(U) is the k­form that maps 

p ∈ U → f(p)ωp ∈ Λk(T ∗Rn). (4.163) p 

2. Let ωi ∈ Ωk(U), i = 1, 2. Then ω1 + ω2 is the k­form that maps 

p ∈ U → (ω1)p + (ω2)p ∈ Λk(T ∗Rn). (4.164) p 

3. Let ωi ∈ Ωki(U), i = 1, 2, and k = k1 + k2. Then w1 ∧ω2 ∈ Ωk(U) is the k­form 
that maps 

p ∈ U → (ω1)p ∧ (ω2)p ∈ Λk(T ∗Rn), (4.165) p 

since (ωi)p ∈ Λki(T ∗Rn).p 

Definition 4.41. We find it convenient to define Λ0(Tp 
∗Rn) = R. 
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A zero­form f on U is just a real­valued function, so Ω0(U) = C∞(R). 
Take f ∈ C∞(U) and df ∈ Ω1(U). This gives an operation 

d : Ω0(U) → Ω1(U), (4.166) 

f df. (4.167) →

Let f, g ∈ C∞(U) (that is, take f, g to be zero­forms). Then d(fg) = gdf + fdg. We 
can think of this operation as a slightly different notation for the gradient operation. 

The maps d : Ωk(U) → Ωk+1(U), k = 0, . . . , (n − 1) give n vector calculus 
operations. 

If ω ∈ Ωk(U), then ω can be written uniquely as the sum 

ω = aIdxI , I strictly increasing, (4.168) 

where each aI ∈ C∞(U). We define 

dω = daI ∧ dxI . (4.169) 

This operator is the unique operator with the following properties: 

∂f 1. For k = 0, this is the operation we already defined, df = 
∂xi 
dxi. 

2. If ω ∈ Ωk, then d(dω) = 0. 

3. If ωi ∈ Ωki(U), i = 1, 2, then d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)k1ω1 ∧ dω2. 

Let a ∈ C∞(U), and adxI ∈ Ωk(U), I strictly increasing. Then 

d(adxI) = da ∧ dxI . (4.170) 

Suppose that I is not strictly increasing. Then 

dxI = dxi1 ∧ · · · ∧ dxik (4.171) 
= 0 if ir = is. 

If there are no repetitions, then there exists σ ∈ Sk such that J = Iσ is strictly 
increasing. Then 

dxJ = (−1)σdxI , (4.172) 

so 

d(adxI) = (−1)σd(adxJ) 

= (−1)σda ∧ dxJ (4.173) 

= da ∧ dxI . 

Putting this altogether, for every multi­index I of length k, 

d(adxI) = da ∧ dxI . (4.174) 
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Lecture 23

Let U be an open set in Rn . For each k = 0, . . . , n − 1, we define the differential 

operator 
d : Ωk(U) → Ωk+1(U). (4.175) 

These maps are the n basic vector calculus operations in n­dimensional calculus. We 
review how d is defined. 

For k = 0, Ω0(U) = C∞(U). Let f ∈ C∞(U), and let c = f(p), where p ∈ U . 
The mapping dfp : TpRn → TcR = R maps TpRn to R, so dfp ∈ T ∗Rn . The map p 

df ∈ Ω1(U) is a one­form that maps p ∈ U to dfp ∈ T ∗Rn . A formula for this in p 

coordinates is � ∂f 
df = dxi. (4.176) 

∂xi 

In k dimensions, d is a map 

d : Ωk(U) → Ωk+1(U). (4.177) 

Given ω ∈ Ωk(U), ω can be written uniquely as 

ω = aIdxI 
I� (4.178) 

= aIdxi1 ∧ · · · ∧ dxik 
, 

I 

where i1 < < ik and each aI ∈ C∞(U). Then, we define · · ·

dω = daI ∧ dxI � ∂aI (4.179) 
= dxi ∧ dxI ,

∂xi
i,I 

where each I is strictly increasing. 
The following are some basic properties of the differential operator d: 

1. If µ ∈ Ωk(U) and ν ∈ Ω�(U), then 

dµ ∧ ν = dµ ∧ ν + (−1)k µ ∧ dν. (4.180) 

2. For and ω ∈ Ωk(U), 
d(dω) = 0. (4.181) 

Remark. Let I be any multi­index, and let aI ∈ C∞(U). Then 

d(aIdxI) = daI ∧ dxI . (4.182) 
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We now prove the above two basic properties of the differential operator. 

Claim. If µ ∈ Ωk(U) and ν ∈ Ω�(U), then 

dµ ∧ ν = dµ ∧ ν + (−1)k µ ∧ dν. (4.183) 

Proof. Take µ = aIdxI and ν = bJdxJ , where I, J are strictly increasing. Then 

µ ∧ ν = aIbJ dxI ∧ dxJ . (4.184) 

no longer increasing 

Then � ∂aIbJ
d(µ ∧ ν) = dxi ∧ dxI ∧ dxJ

∂xi
i,I,J 

= 
� ∂aI 

bJdxi ∧ dxI ∧ dxJ (I) (4.185) 
∂xi � ∂bJ 

+ aI dxi ∧ dxI ∧ dxJ , (II)
∂xi 

We calculate sums (I) and (II) separately. � ∂aI
(I) = dxi ∧ dxI ∧ bJdxJ

∂xi
i,I,J � ∂aI � (4.186) 

= dxi ∧ dxI bJdxJ
∂xi 

∧ 
i,I J 

= dµ ∧ ν. � ∂bJ
(II) = aI dxi ∧ dxI ∧ dxJ

∂xi
i,I,J 

= (−1)k 
� 

aIdxI ∧ 
∂bJ 

dxi ∧ dxJ
∂xi

i,I ,J (4.187) 

= (−1)k aIdxI 
� ∂bJ 

dxi ∧ dxJ∧ 
∂xi

I i,J 

= (−1)k µ ∧ dν. 

So, 

d(µ ∧ ν) = (I) + (II) 

= dµ ∧ ν + (−1)k µ ∧ dν. 
(4.188) 
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Claim. For and ω ∈ Ωk(U), 
d(dω) = 0. (4.189) 

Proof. Let ω = aIdxI , so 

dω = 
∂aI 
∂xj

j,I 

Then, 

dxj ∧ dxI . (4.190) 

∂2aI
d(dω) dxi ∧ dxj ∧ dxI . (4.191) = 

∂xi∂xj
i,j,I 

Note that if i = j, then there is a repeated term in the wedge product, so


∂2aI
d(dω) dxi ∧ dxj ∧ dxI (4.192) = 

∂xi∂xji<j 

+ 
i>j 

∂2aI 
∂xi∂xj 

dxi ∧ dxj ∧ dxI . (4.193) 

Note that dxi ∧ dxj = −dxj ∧ dxi. We relabel the second summand to obtain ⎞⎛ ⎜⎜⎝ 
∂2aI ∂2aI ⎟⎟⎠
d(dω) dxi ∧ dxj ∧ dxI = −
∂x ∂x ∂x ∂xi j j i� 

0 

= 0. 

Definition 4.42. A k­form ω ∈ Ωk(U) is decomposable if ω = µ1 ∧ · · · ∧ µk, where 
each µi ∈ Ω1(U). 

Theorem 4.43. If ω is decomposable, then 

(4.194) i<j 

k

dω = (−1)i−1 (4.195) µ1 ∧ · · · ∧ µi−1 ∧ dµi ∧ µi+1 ∧ · · · ∧ µk. 
i=1 

Proof. The proof is by induction. 
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The case k = 1 is obvious. We show that if the theorem is true for k− 1, then the 
theorem is true for k. 

= (d(µ1 ∧ · · · ∧ µk−1)) ∧ µkd((µ1 ∧ · · · ∧ µk−1) ∧ µk) 
+ (−1)k−1(µ1 ∧ · · · ∧ µk−1) ∧ dµk 

k−1

= (−1)i−1 µ1 ∧ · · · ∧ dµi ∧ · · · ∧ µk−1 ∧ µk 
(4.196) i=1 

+ (−1)k−1(µ1 ∧ · · · ∧ µk−1 ∧ µk) 
k

= (−1)i−1 µ1 ∧ · · · ∧ dµi ∧ · · · ∧ µk. 
i=1 

4.10 Pullback Operation on Exterior Forms 

Another important operation in the theory of exterior forms is the pullback operator. 
This operation is not introduced in 18.01 or 18.02, because vector calculus in not 
usually taught rigorously. 

Let U be open in Rn and V be open in Rm, and let f : U → V be a C∞ map. 
We can write out in components f = (f1, . . . , fn), where each fi ∈ C∞(U). Let p ∈ U 
and q = f(p). 

The pullback of the map dfp : TpRm TqRn is→

(dfp)
∗ : Λk(T ∗Rn) → Λk(T ∗Rm). (4.197) q p 

Suppose you have a k­form ω on V . 

ω ∈ Ωk(V ), (4.198) 

ωq ∈ Λk(T ∗Rn). (4.199) q 

Then 
(dfp)

∗wq ∈ Λk(T ∗Rm). (4.200) p 

Definition 4.44. f ∗ω is the k­from whose value at p ∈ U is (dfp)∗ωq. 

We consider two examples. Suppose φ ∈ Ω0(V ) = C∞(V ). Then f ∗φ(p) = φ(q), 
so f ∗φ = φ f , where f : U V and φ : V R.◦ → →

Again, suppose that φ ∈ Ω0(V ) = C∞(V ). What is f ∗dφ? Let f(p) = q. We have 
the map dφq : TpRn TcR = R, where c = φ(q). So, →

(dfp)
∗(dφ)q = dφq ◦ dfp 

(4.201) 
= d(φ ◦ f)p. 
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Therefore, 
f ∗dφ = df ∗φ. (4.202) 

Suppose that µ ∈ Ωk(V ) and ν ∈ Ωell(V ). Then 

(f ∗(µ ∧ ν))p = (dfp)
∗(µq ∧ νq) 

= (dfp)
∗µq ∧ (df p

∗)νq. 
(4.203) 

Hence, 
f ∗(µ ∧ ν) = f ∗µ ∧ f ∗ν. (4.204) 

We now obtain a coordinate formula for f ∗. 
Take ω ∈ Ωk(V ). We can write ω = , where each aI ∈ C∞(U ).aIdx i1 ∧· · ·∧dx ik

Then 

f ∗ω = f ∗aIf 
∗dx i1 ∧ · · · ∧ f ∗dx ik � (4.205) 

= f ∗aIdfi1 ∧ · · · ∧ dfik , 

where we used the result that f ∗dx i = dx i ◦ f = dfi. 
∂fiNote that dfi = 
∂xj 
dx j, where ∂fi 

∂xj 
∈ C∞(U ). Also, f ∗aI = aI ◦ f ∈ C∞(U ), 

which shows that 
f ∗ω ∈ Ωk(U ). (4.206) 

The following theorem states a very useful property of the pullback operator. 

Theorem 4.45. Let ω ∈ Ωk(V ). Then, 

df ∗ω = f ∗dω . (4.207) 

Proof. We have already checked this for ω = φ ∈ C∞(V ), k = 0 already. We now 
prove the general case. � 

We can write ω = aIdx I . Then 

f ∗ω = f ∗aIdfi1 ∧ · · · ∧ dfik . (4.208) 

So, 

df ∗ω = df ∗aI ∧ dfi1 ∧ · · · ∧ dfik � (4.209) 
+ f ∗aI ∧ d(dfi1 ∧ · · · ∧ dfik) 

Note that 

k

= (−1)r−1dfi1 ∧ · · · ∧ d(dfir ) ∧ · · · ∧ dfik . (4.210) d(dfi1 ∧ · · · ∧ dfik) 
r=1 
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We know that d(dfir ) = 0, so 

df∗ω = df∗aI ∧ dfi1 ∧ · · · ∧ dfik 

I 

= f ∗daI ∧ f ∗(dxi1 ∧ · · · ∧ dxik) 
(4.211) 

I 

= f ∗( daI ∧ dxI) 

= f ∗dω. 
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Lecture 24

We review the pullback operation from last lecture. Let U be open in Rm and let 

V be open in Rn . Let f : U → V be a C∞ map, and let f(p) = q. From the map 

dfp : TpRm → TqRn , (4.212) 

we obtain the pullback map 

(dfp)
∗ : Λk(T ∗ 

q ) → 

ω ∈ Ωk(V ) → 

Λk(T ∗ 
p ) 

f ∗ω ∈ Ωk(U). 
(4.213) 

We define, f ∗ωp = (dfp)
∗ωq, when ωq ∈ Λk(T ∗ 

q ). 
The pullback operation has some useful properties: 

1. If ωi ∈ Ωki(V ), i = 1, 2, then 

f ∗(ω1 ∧ ω2) = f ∗ω1 ∧ f ∗ω2. (4.214) 

2. If ω ∈ Ωk(V ), then 
df∗ω = f ∗dω. (4.215) 

We prove some other useful properties of the pullback operation. 

Claim. For all ω ∈ Ωk(W ), 
f ∗g∗ω = (g ◦ f)∗ω. (4.216) 

Proof. Let f(p) = q and g(q) = w. We have the pullback maps 

(dfp)
∗ :Λk(Tq 

∗) → Λk(Tp 
∗) (4.217) 

(dgq)
∗ :Λk(T ∗ 

w) → Λk(Tq 
∗) (4.218) 

(g ◦ f)∗ :Λk(T ∗ 
w) → Λk(Tp 

∗). (4.219) 

The chain rule says that 
(dg ◦ f)p = (dg)q ◦ (df)p, (4.220) 

so 
d(g ◦ f)∗ = (dfp)

∗(dgq)
∗. (4.221) p 

Let U, V be open sets in Rn, and let f : U → V be a C∞ map. We consider the 
pullback operation on n­forms ω ∈ Ωn(V ). Let f(0) = q. Then 

(dxi)p, i = 1, . . . , n, is a basis of Tp 
∗, and (4.222) 

(dxi)q, i = 1, . . . , n, is a basis of Tq 
∗. (4.223) 
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Using fi = xi ◦ f , 

(dfp)
∗(dxi)q = (dfi)p � ∂fi (4.224) 

= (p)(dxj)p. 
∂xj 

In the Multi­linear Algebra notes, we show that 

∂fi
(dfp)

∗(dx1)q ∧ · · · ∧ (dxn)q = det 
∂xj 

(p) (4.225) (dx1)p ∧ · · · ∧ (dxn)p. 

So, � � 
∂fi 

= det (4.226) f ∗dx1 ∧ · · · ∧ dxn 
∂xj 

dx1 ∧ · · · ∧ dxn. 

Given ω = φ(x)dx1 ∧ · · · ∧ dxn, where φ ∈ C∞, 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (4.227) 

5 Integration with Differential Forms 

Let U be an open set in Rn, and let ω ∈ Ωk(U) be a differential k­form. 

Definition 5.1. The support of ω is 

supp ω = {p ∈ U : ωp = 0}. (5.1) 

Definition 5.2. The k­form ω is compactly supported if supp ω is compact. We define 

Ωc
k(U) = the space of all compactly supported k­forms. (5.2) 

Note that 
Ωc 

0(U) = C0
∞(Rn). (5.3) 

Given ω ∈ Ωn
c (U), we can write 

ω = φ(x)dx1 ∧ · · · ∧ dxn, (5.4) 

where φ ∈ C0
∞(U). 

Definition 5.3. � � � 
φ = φ(x)dx1 . . . dxn. (5.5) 

U 

ω ≡ 
U U 
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We are going to state and prove the change of variables theorem for integrals of 
differential k­forms. To do so, we first need the notions of orientation preserving and 
orientation reversing. 

Let U, V be open sets in Rn . Let f : U → V be a C∞ diffeomorphism. That is, 
for every p ∈ U , Df(p) : Rn Rn is bijective. We associate Df(p) with the matrix → 

Df(p) ∼ ∂fi 
(p) . (5.6) = 

∂xj 

The map f is a diffeomorphism, so 

∂fi
det (p) = 0. (5.7) 

∂xj 
�

So, if U is connected, then this determinant is either positive everywhere or negative 
everywhere. 

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The 
map f is orientation reversing if det < 0 everywhere. 

The following is the change of variables theorem: 

Theorem 5.5. If ω ∈ Ωn
c (V ), then 

f ∗ω = ω (5.8) 
U V 

if f is orientation preserving, and 

f ∗ω = ω (5.9) − 
VU 

if f is orientation reversing. 

In Munkres and most texts, this formula is written in slightly uglier notation. Let 
ω = φ(x)dx1 ∧ · · · ∧ dxn, so 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn. (5.10) 

The theorem can be written as following: 

Theorem 5.6. If f is orientation preserving, then 

∂fi
φ = φ f det . (5.11) ◦

∂xjV U 
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This is the coordinate version of the theorem. 
We now prove a useful theorem found in the Supplementary Notes (and Spivak) 

called Sard’s Theorem. 
Let U be open in Rn, and let f : U → Rn be a C1(U) map. For every p ∈ U , we 

have the map Df(p) : Rn Rn . We say that p is a critical point of f if Df(p) is not→
bijective. Denote 

Cf = the set of all critical points of f. (5.12) 

Sard’s Theorem. The image f(Cf ) is of measure zero. 

Proof. The proof is in the Supplementary Notes. 

As an example of Sard’s Theorem, let c ∈ Rn and let f : U Rn be the map →
defined by f(x) = c. Note that Df(p) = 0 for all p ∈ U , so Cf = U . The set Cf = U 
is not a set of measure zero, but f(Cf ) = c} is a set of measure zero. {

As an exercise, you should prove the following claim: 

Claim. Sard’s Theorem is true for maps f : U Rn, where U is an open, connected →
subset of R. 

Proof Hint: Let f ∈ C∞(U) and define g = ∂f . The map g is continuous because 
∂x 

1(U). Let I = [a, b] ⊆ U , and define � = b − a. The continuity of g implies that f ∈ C
g is uniformly continuous on I. That is, for every � > 0, there exists a number N > 0 
such that g(x)− g(y) < � whenever x, y ∈ I and x − y < �/N .| | | |

Now, slice I into N equal subintervals. Let Ir, r = 1, . . . , k ≤ N be the subintervals 
intersecting Cf . Prove the following lemma: 

Lemma 5.7. If x, y ∈ Ir, then f(x)− f(y) < ��/N .| |

Proof Hint: Find c ∈ Ir such that f(x)−f(y) = (x−y)g(c). There exists c0 ∈ Ir ∩Cf 
if and only if g(c0) = 0. So, we can take 

g(c) = g(c)− g(c0) ≤ �. (5.13) | | | |

Then f(x)− f(y) ≤ ��/N .| |

From the lemma, we can conclude that 

f(Ir) ≡ Jr (5.14) 

is of length less than ��/N . Therefore, 

k

 
f(Cf ∩ I) ⊂ Jr (5.15) 

r=1 

is of length less than 
�� ��N 

N 
k ≤ 

N 
= ��. (5.16) 
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Letting �→ 0, we find that F (Cf ∩ I) is of measure zero. 
To conclude the proof, let Im,m = � 1, 2, 3, . . . , be an exhaustion of U by closed 

intervals I1 ⊂ I2 ⊂ I3 ⊂ · · · such that Im = U . We have shown that f(Cf ∩ Im) is � 
measure zero. So, f(Cf ) = f(Cf ∩ Im) implies that f(Cf ) is of measure zero. 
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Lecture 25


5.1 The Poincare Lemma 

Let U be an open subset of Rn, and let ω ∈ Ωk(U) be a k­form. We can write 
ω = aIdxI , I = (i1, . . . , ik), where each aI ∈ C∞(U). Note that 

ω ∈ Ωk 
0 (U) for each I. (5.17) c ⇐⇒ aI ∈ C∞

We are interested in ω ∈ Ωn
c (U), which are of the form 

ω = fdx1 ∧ · · · ∧ dxn, (5.18) 

where f ∈ C0
∞(U). We define 

ω = f = fdx, (5.19) 
U U U 

the Riemann integral of f over U . 
Our goal over the next couple lectures is to prove the following fundamental the­

orem known as the Poincare Lemma. 

Poincare Lemma. Let U be a connected open subset of Rn, and let ω ∈ Ωn
c (U). The 

following conditions are equivalent: 

1. ω = 0,
U 

2. ω = dµ, for some µ ∈ Ωn−1(U).c 

In today’s lecture, we prove this for U = Int Q, where Q = [a1, b1]× · · · × [an, bn] 
is a rectangle. 

Proof. First we show that (2) implies (1). 

Notation. 

(5.20) dx1 ∧ · · · ∧ �dxi ∧ · · · ∧ dxn ≡ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.


Let µ ∈ Ωn−1(U). Specifically, define
c 

µ = fidx1 ∧ · · · ∧ � (5.21) dxi ∧ · · · ∧ dxn, 
i 

where each fi ∈ C0
∞(U). Every µ ∈ Ωn−1(U) can be written this way. c 

Applying d we obtain �� ∂fi
dµ = dxi ∧ · · · ∧ dxn. (5.22) 

∂xj 
dxj ∧ dx1 ∧ · · · ∧ �

i j 
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Notice that if i = j, then the i, jth summand is zero, so � ∂fi
dµ = dxi ∧ · · · ∧ dxn

∂xi 
dxi ∧ dx1 ∧ · · · ∧ �

i (5.23) 

= 
� 

(−1)i−1 ∂fi 
∂xi 

dx1 ∧ · · · ∧ dxn. 

Integrate to obtain 

dµ = 
� 

(−1)i−1 ∂fi 
. (5.24) 

∂xiU U 

Note that � bi ∂fi 
dxi = fi(x) xi=ai 

= 0 − 0 = 0, (5.25) 
∂xi 

|xi=bi 

ai 

because f is compactly supported in U . It follows from the Fubini Theorem that 

∂fi 
= 0. (5.26) 

∂xiU 

Now we prove the other direction, that (1) implies (2). Before our proof we make 
some remarks about functions of one variable. 

Suppose I = (a, b) ⊆ R, and let g ∈ C0
∞(I) such that supp g ⊆ [c, d], where 

a < c < d < b. Also assume that � b 
g(s)ds = 0. (5.27) 

a 

Define � x 
h(x) = g(s)ds, (5.28) 

a 

where a ≤ x ≤ b. 

Claim. The function h is also supported on c, d. 

Proof. If x > d, then we can write � b � b 
h(x) = g(s)ds − g(s)ds, (5.29) 

a x 

where the first integral is zero by assumption, and the second integral is zero because 
the integrand is zero. 

Now we begin our proof that (1) implies (2).

Let ω ∈ Ωn(U), where U = Q, and assume that


ω = 0. (5.30) 
U 

We will use the following inductive lemma: 
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Lemma 5.8. For all 0 ≤ k ≤ n + 1, there exists µ ∈ Ωn−1(U) and f ∈ C0
∞(U) suchc 

that 
ω = dµ+ fdx1 ∧ · · · ∧ dxn	 (5.31) 

and	 � 
f(x1, . . . , xn)dxk . . . dxn = 0.	 (5.32) 

Note that the hypothesis for k = 0 and µ = 0 says that ω = 0, which is our 
assumption (1). Also note that the hypothesis for k = n + 1, f = 0, and ω = dµ 
is the same as the statement (2). So, if we can show that (the lemma is true for k) 
implies (the lemma is true for k+ 1), then we will have shown that (1) implies (2) in 
Poincare’s Lemma. We now show this. 

Assume that the lemma is true for k. That is, we have 

ω = dµ+ fdx1 ∧ · · · ∧ dxn	 (5.33) 

and � 
f(x1, . . . , xn)dxk . . . dxn = 0, (5.34) 

where µ ∈ Ωn−1(U), and f ∈ C0
∞(R).c 

We can assume that µ and f are supported on Int Q�, where Q� ⊆ Int Q and 
Q� = [c1, d1]× · · · × [cn, dn]. 

Define � 
g(x1, . . . , xk) = f(x1, . . . , xn)dk+1 . . . dxn. (5.35) 

Note that g is supported on the interior of [c1, d1]× · · · × [ck, dk]. Also note that 

bk 

g(x1, . . . , xk−1, s)ds = f(x1, . . . , xn)dxk . . . dxn = 0 (5.36) 
ak 

by	our assumption that the lemma holds true for k. 
Now, define 

xk 

h(x1, . . . , xk) = g(x1, . . . , xk−1, s)ds.	 (5.37) 
ak 

From our earlier remark about functions of one variable, h is supported on ck ≤ xk ≤
dk. Also, note that h is supported on ci ≤ xi ≤ di, for 1 ≤ i ≤ k − 1. We conclude 
therefore that h is also supported on [c1, d1]× · · · × [ck, dk]. 

Both g and its “anti­derivative” are supported. 

∂h 
= g.	 (5.38) 

∂xk 

Let � = n − k, and consider ρ = ρ(xk+1, . . . , x 0 (R�). Assume that ρ isn)	∈ C∞
supported on the rectangle [ck+1, dk+1]× · · · × [cn, dn] and that 

ρdxk+1 . . . dxn = 1.	 (5.39) 
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We can always find such a function, so we just fix one such function. 
Define 

ν = (−1)kh(x1, . . . , xk)ρ(xk+1, . . . , x n. (5.40) n)dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dx
The form ν is supported on Q� = [c1, d1]× · · · × [cn, dn]. 

Now we compute dν, � ∂ 
dν = (−1)k n. (5.41) 

∂xj 
(hρ)dxj ∧ dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dx

j 

Note that if j = k, then the summand is zero, so 

∂h 
dν = (−1)k 

∂xk 
ρdxk ∧ dx1 ∧ · · · ∧�dxk ∧ · · · ∧ dxn 

= (−1) 
∂h 

∂xk 
ρdx1 ∧ · · · ∧ dxn (5.42) 

= −gρdx1 ∧ · · · ∧ dxn. 
Now, define 

µnew = µ− ν, (5.43) 

and 
fnew = f(x1, . . . , xn)− g(x1, . . . , xk)ρ(xk+1, . . . , xn). (5.44) 

ω = dµnew + fnew dx1 ∧ · · · ∧ dxn


= dµ+ (g(x1, . . . , xk)ρ(xk+1, . . . , xn)− f(x1, . . . , xk)− gρ)dx1 ∧ · · · ∧ dxn

(5.45) 

= dµ+ fdx1 ∧ · · · ∧ dxn


= ω.


Note that


fnew = fnew (x1, . . . , xn)dxk+1 . . . dxn 

= f(x1, . . . , xn)dxk+1 . . . dxn � (5.46) 

− g(x1, . . . , xk) ρ(xk+1, . . . , xn)dxk+1 . . . dxn 

= g(x1, . . . , xk)− g(x1, . . . , xk) = 0, 

which implies that the lemma is true for k + 1. 

Remark. In the above proof, we implicitly assumed that if f ∈ C0
∞(Rn), then 

g(x1, . . . , xk) = f(x1, . . . , xn)dxk+1 . . . dxm (5.47) 

is in C0
∞(Rk). We checked the support, but we did not check that g is in C∞(Rk). 

The proof of this is in the Supplementary Notes. 
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Lecture 26

We continue our study of forms with compact support. Let us begin with a review. 
Let U ∈ Rn be open, and let 

ω = fI(x1, . . . , xn)dxI , (5.48) 
I 

where I = (i1, . . . , ik) is strictly increasing and dxI = dxi1 ∧ · · · ∧ dxik . Then 

ω is compactly supported ⇐⇒ every fI is compactly supported. (5.49) 

By definition, 
supp fI = {x ∈ U : fI(x) = 0}. (5.50) 

We assume that the fI ’s are C2 maps. 

Notation. 

Ωc
k(U) = space of compactly supported differentiable k­forms on U . (5.51) 

Now, let ω ∈ Ωn
c (U) defined by 

ω = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn, (5.52) 

where f ∈ Ω0 
c (U). Then 

ω = f(x1, . . . , xn)dx1 ∧ · · · ∧ dxn. (5.53) 
Rn Rn 

Last time we proved the Poincare Lemma for open rectangles R in Rn . We assumed 
that ω ∈ Ωc

n(Int R). That is, we assumed that ω ∈ Ωc
n(Rn) such that supp ω ⊂ Int R. 

We showed that for such ω the following two conditions are equivalent: 

1. Rn ω = 0, 

2. There exists a µ ∈ Ωn−1(Int R) such that dµ = 0.c 

Definition 5.9. Whenever ω ∈ Ωk(U) and ω = dµ for some µ ∈ Ωk−1(U), we say 
that ω is exact. 

Definition 5.10. Whenever ω ∈ Ωk(U) such that dω = 0, we say that ω is closed. 

Observe that 
ω ∈ Ωn

c (U) = dω = 0. (5.54) ⇒ 

Now we prove the Poincare Lemma for open connected subsets of Rn . 
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Poincare Lemma. Let U be a connected open subset of Rn, and let ω ∈ Ωn
c (U). The 

following conditions are equivalent: 

1. ω = 0,
U 

2. ω = dµ, for some µ ∈ Ωn−1(U).c 

Proof. We prove this more general case by reducing the proof to the case where U is 
a rectangle, which we proved in the previous lecture. 

First we prove that (2) implies (1). We can choose a family of rectangles {Ri, i ∈
N} such that 

 

U = Int Ri (5.55) 
i∈N 

Since the support of µ is compact, the set supp µ is covered by finitely many of the 
rectangles. 

We take a partition of unity {φi, i ∈ N} subordinate to {Ri}, so that 

N

µ = ����)supported on Int Ri (5.56) φiµ
i=1 

Then � � 
dµ = d(φiµ). (5.57) 

Rn 
i 

Each term on the r.h.s is zero by the Poincare Lemma we proved last lecture. 
We now prove the other direction, that (1) implies (2). It is equivalent to show 

that if ω1, ω2 ∈ Ωn
c (U) such that 

ω1 = ω2, (5.58) 

then ω1 ∼ ω2, meaning that there exists a form µ ∈ Ωn−1(U) such that ω1 = ω2 + dµ.c 

Choose a partition of unity {φi} as before. Then 

M

ω = φiω (5.59) 
i=1 supported on Int Ri 

Let � 
ω = c ∈ R, (5.60) 

and � 
φiω = ci. (5.61) 
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Choose a form ω0 such that 

ω0 = 1 (5.62) 

and such that supp ω0 ⊆ Q0 = Rj for some j. Then � � 
φiω���� = ciω0���� (5.63) 

supported in Ri supported in Q0 

We want to show that there exists µi ∈ Ωn−1(U) such that φiω = ciωi + dµi.c 

Now we use the fact that U is connected. We use the following lemma. 

Lemma 5.11. Let U be connected. Given rectangles Ri such that supp φiω ⊂ Int Ri, 
and given a fixed rectangle Q0 and any point x ∈ U , there exists a finite sequence 
of rectangles R0, . . . , RN with the following properties: Q0 = R0, x ∈ Int RN , and 
(Int Ri) ∩ (Int Ri+1) is non­empty. 

We omit the proof of this lemma. 
Now, define ωi = φiω, so 

ωi = ciω0. (5.64) 

Note that 

supp (ciω0) ⊆ Int (Q0) (5.65) 

supp (ωi) ⊆ Int (Ri). (5.66) 

Choose forms νi such that supp νi ⊆ Int Ri ∩ Int Ri+1 and such that 

νi = 1. (5.67) 

This implies that 
supp (νi − νi+1) ⊆ Int Ri+1 (5.68) 

By definition, 

(νi − νi+1) = 0. (5.69) 

By the Poincare Lemma we proved last time, νi ∼ νi+1, so there exists µi ∈ Ωn−1(U)c 

such that νi = νi+1 + dµi. 
So, 

ciω0 ∼ ciν0 ∼ ciν1 ∼ . . . ∼ ciνN ∼ φiω. (5.70) 
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5.2 Proper Maps and Degree 

We introduce a class of functions that remain compactly supported under the pullback 
operation. 

Definition 5.12. Let U ⊆ Rn and V ⊆ Rk, and let f : U → V be a continuous map. 
The map f is proper if for all compact subsets K ⊆ V , the set f−1(K) is compact. 

Let U ⊆ Rn and V ⊆ Rk, and let f : U → V be a continuous map. Also let 
ω ∈ Ωk(V ). The map 

f ∗ : Ωk(V ) → Ωk(U) (5.71) 

is defined such that 

ω = g(y1, . . . , yn)dyi1 ∧ . . . ∧ dyik 
→ f ∗ω = g(f(x))d fik 

. (5.72) fi1 ∧ · · · d

So, 
f−1(supp ω) ⊇ supp (f∗ω). (5.73) 

If f is proper and ω ∈ Ωn
c (V ), then supp (f∗ω) is compact, in which case the map f ∗ 

is actually of the form 
f ∗ : Ωk

c (V ) → Ωk
c (U). (5.74) 

That is, ω ∈ Ωc
n(V ) → f ∗ω ∈ Ωn

c (U). So, it makes sense to take the integral 

f ∗ω = (deg f) ω. (5.75) 
U V 

Theorem 5.13. Let U, V be connected open subsets of Rn, and let f : U V be a → 
C∞ map. For all ω ∈ Ωn

c (V ), 

f ∗ω = (deg f) ω. (5.76) 
U V 

Proof. Take ω0 ∈ Ωn
c (V ) such that 

ω0 = 1. (5.77) 

Define � 
deg f ≡ f ∗ω0, (5.78) 

and suppose that 

ω = c. (5.79) 

Then � � 
ω = cω0. (5.80) 
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By the Poincare Lemma, ω ∼ cω0. That is, there exists µ ∈ Ωn−1(V ) such that c 

ω = cω0 + dµ. Then 

f ∗ω = f ∗(cω0) + f ∗(dµ) 
(5.81) 

= f ∗(cω0) + d(f∗µ), 

which shows that f ∗ω ∼ f ∗(cω0). Putting this altogether, 

f ∗ω = f ∗(cω0) 

= c f ∗ω0 
(5.82) 

= c deg f 

= ω deg f. 

We had ω = g(y1, . . . , yn)dy1 ∧ · · · ∧ dyn, so 

f ∗ω = g(f(x))df1 ∧ · · · ∧� 
dfm 

∂fi (5.83) 
= g(f(x)) det 

∂xj 
dx1 ∧ · · · ∧ dxn, 

where we used the fact that 
n� ∂fi

dfi = dxj (5.84) 
∂xjj=1 

Restated in coordinates, the above theorem says that 

g(f(x)) det(Df)dx1 ∧ · · · ∧ dxn 
U 

= (deg f) g(y1, . . . , yn)dy1 ∧ · · · ∧ dyn. (5.85) 
V 

Claim. Given proper maps f : V → W and g : U V , where U, V,W are connected →
open subsets of Rn , 

deg(fg) = (deg g)(deg f). (5.86) 

Proof. Note that (f ◦ g)∗ = g∗ f ∗, so ◦ � � 
deg(f ◦ g) ω = (f ◦ g)∗ω 

W �U 
= g∗(f∗ω) 

V � (5.87) 

= (deg g) f ∗ω 
V 

= (deg g)(deg f) ω. 
W 
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Lecture 27

We proved the following Poincare Lemma: 

Poincare Lemma. Let U be a connected open subset of Rn, and let ω ∈ Ωn
c (U). The 

following conditions are equivalent: 

1. ω = 0,
U 

2. ω = dµ, for some µ ∈ Ωn−1(U).c 

We first proved this for the case U = Int Q, where Q was a rectangle. Then we 
used this result to generalize to arbitrary open connected sets. We discussed a nice 
application: proper maps and degree. 

Let U, V be open subsets of Rn, and let f : U → V be a C∞ map. The map f is 
proper if for every compact set C ⊆ V , the pre­image f−1(C) is also compact. Hence, 
if f is proper, then 

f ∗Ωc
k(V ) ⊆ Ωc

k(U). (5.88) 

That is, if ω ∈ Ωc
k(V ), then f ∗ω ∈ Ωc

k(U), for all k. 
When k = n, 

ω ∈ Ωn 
c (V ). (5.89) 

In which case, we compare � � 
ω and f ∗ω. (5.90) 

v U 

Using the Poincare Lemma, we obtain the following theorem. 

Theorem 5.14. There exists a constant γf with the property that for all ω ∈ Ωn
c (V ), 

f ∗ω = γf ω. (5.91) 
U V 

We call this constant the degree of f , 

Definition 5.15. 
deg(f) = γf . (5.92) 

Let U, V,W be open connected subsets of Rn, and let f : U → V and g : V W→
be proper C∞ maps. Then the map g ◦ f : U → W is proper, and 

deg(g ◦ f) = deg(f) deg(g). (5.93) 

Proof Hint: For all ω ∈ Ωc
n(W ), (g ◦ f)∗ω = f ∗(g∗ω). 
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We give some examples of the degree of various maps. Let f = Ta, the transpo­
sition by a. That is, let f(x) = x + a. From #4 in section 4 of the Supplementary 
Notes, the map Ta : Rn Rn is proper. One can show that deg(Ta) = 1.→

As another example, let f = A : Rn Rn be a bijective liner map. Then → 

1 if det A > 0,
deg A = (5.94) 

if det A < o.−1 

We now study the degree as it pertains to orientation preserving and orientation 
reversing maps. 

Let U, V be connected open sets in Rn, and let f : U → V be a diffeomorphism. 
Take p ∈ U . Then Df(p) : Rn Rn is one­to­one and onto. The map f is orientation →
preserving if detDf(p) > 0 for all p ∈ U , and the map f is orientation reversing if 
deg Df(p) < 0 for all p ∈ U . 

Theorem 5.16. If f is orientation preserving, then deg(f) = 1; if f is orientation 
reversing, then deg(f) = −1. 

Proof. Let a ∈ U and b = f(a). Define 

fold = f, (5.95) 

and define 
fnew = T−b ◦ fold ◦ Ta, (5.96) 

where T−b : Rn Rn and Ta : Rn → Rn are transpositions by −b and a, respectively. →
By the formula deg(g ◦ f) = deg(f) deg(g), 

deg(fnew) = deg(T−b) deg(fold) deg(Ta) 
(5.97) 

= deg(old). 

By replacing f with fnew , we can assume that 0 ∈ U and f(0) = 0. 
We can make yet another simplification, that Df(0) = I, the identity. To see this, 

let Df(0) = A, where A : Rn Rn . Taking our new f , we redefine fold = f , and we →
redefine fnew = A−1 fold. Then,◦ 

deg(fnew) = deg(A) deg deg(fold ), (5.98) 

where 

deg A = deg(Dfold) 

1 if Dfold is orient. preserving, (5.99) 
= 

if Dfold is orient. reversing.−1 
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We again replace f with fnew. It suffices to prove the theorem for this new f . To 
summarize, we can assume that 

0 ∈ U, f(0) = 0. and Df(0) = I. (5.100) 

Consider g(x) = x − f(x) (so f(x) 
(g1, . . . , gn), then we write g = � 

= x − g(x)). Note that (Dg)(0) = � 

I − I = 0. If 

∂gi 
(0) = 0.	 (5.101) 

∂xj 

So, each ∂gi (0) = 0.
∂xj 

Lemma 5.17. There exists δ > 0 such that for all |x| < δ, 
x|g(x)| ≤ 
|
2

| 
. (5.102) 

Proof. So far, we know that g(0) = 0 − f(0) = 0, and ∂gi (0) = 0. By continuity, 
∂xj 

there exists δ > 0 such that 
∂gi 
∂xj 

(x)

1 
,	 (5.103) ≤ 

2n 

for all |x| < δ. Using the Mean­value Theorem, for all x < δ,| | 

gi(x) =	gi(x)− gi(0) � ∂gi (5.104) 
= (c)xj,

∂xj 

where c = t0x for some 0 < t0 < 1. So, 
n

|gi(x)| ≤ 
2n
|xi|

i=1 

1	 (5.105) 
max{|xi|}≤ 

2 
1 

= x . 
2
| |

Define f̃ : Rn Rn as follows. Let ρ ∈ C0
∞(Rn), defined to have the follow → 

1 

properties 

ρ(x) =


⎧ ⎪⎨ ⎪⎩


1 if |x| < δ/2, 

0 if
 > δ, (5.106) x| |
otherwise. 0 ≤ ρ(x) ≤ 1 

Remember that f(x) x − g(x). Define 

f̃ = 
x − ρ(x)g(x) if x < δ, 

(5.107) 
| | 

x if |x| > δ.
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Claim. The map f̃ has the following properties: 

δ1. f̃ = f(x) for all |x| <
2
, 

2. f̃ = x for all |x| > δ, 

x3. |f̃(x)| ≥ |
2
| , 

4. |f̃(x) x .| ≤ 2| |

Proof. We only proof properties (3) and (4). First we prove property (3). We have 
f̃(x) = x− ρ(x)g(x) = x when x ≥ δ, so |f̃(x) = x when x . For |x| < δ, we | | | | | | | ≥ δ
have 

|f̃(x) x − ρ(x) g(x)| ≥ | | | | 
= x g(x)|| | − |

x (5.108) x≥ | | − |
2

| 

x
= 
|
2

|
. 

We now prove property (4). We have f̃(x) = x − ρ(x)g(x), so f̃(x) = x for| | | |
x ≥ δ. For x < δ, we have 

|f̃(x) x + ρ(x)|g(x)| ≤ | | |
1 ≤ |x|+ x (5.109) 
2
| | 

x .≤ 2| |

Let Qr ≡ {x ∈ Rn : x . The student should check that | | ≤ r}

˜Property (3) = ⇒ f−1(Qr) ⊆ Q2r (5.110) 

and that 
Property (4) = f̃−1(Rn −Q2r) ⊆ Rn −Qr (5.111) ⇒ 

˜Notice that f−1(Qr) ⊆ Q2r = f̃ is proper. ⇒
Now we turn back to the map f . Remember that f : U → V is a diffeomorphism 

and that f(0) = 0. So, the set f(Int Qδ/2) is an open neighborhood of 0 in Rn . Take 

ω ∈ Ωc
n(f(Int Qδ/2) ∩ Int Qδ/4) (5.112) 

such that � 
ω = 1. (5.113) 

Rn 
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Then,

f ∗ω ∈ Ωn

c (Qδ/2) (5.114) 

and 
f̃ ∗ω ∈ Ωn

c (Qδ/2), (5.115) 

by Equation 5.110. This shows that f ∗ω = f̃ ∗ω. Hence, 

f ∗ω = f̃ ∗ω = deg(f) ω 
U U � V (5.116) 

= deg(f̃) ω, 
V 

where � 
ω = 1. (5.117) 

V 

Therefore, 
deg(f) = deg(f̃). (5.118) 

Now, let us use Equation 5.111. Choose ω ∈ Ωc
n(Rn − Q2δ). So, 

f ∗ω ∈ Ωn
c (Rn − Qδ). (5.119) 

Again we take 

ω = 1. (5.120) 
Rn 

By property (2), f̃ = I on Rn − Qδ, so 

f̃ ∗ω = ω. (5.121) 

Integrating, 
n n n 

f̃ ∗ω = deg(f̃) ω = ω. (5.122) 
R R R 

Therefore, 
deg(f) = deg(f̃) = 1. (5.123) 
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Lecture 28

Let U, V be connected open sets of Rn, and let f : U → V be a diffeomorphism. 

Then 
+1 if f is orient. preserving, 

deg(f) = (5.124) 
if f is orient. reversing. −1 

We showed that given any ω ∈ Ωn
c (V ), 

f ∗ω = ω. (5.125) ± 
VU 

Let ω = φ(x)dx1 ∧ · · · ∧ dxn, where φ ∈ C0
∞(V ). Then 

∂fi
f ∗ω = φ(f(x)) det 

∂xj 
(x) dx1 ∧ · · · ∧ dxn, (5.126) 

so, 
∂fi

φ(f(x)) det dx = φ(x)dx. (5.127) 
∂xj 

± 
VU 

Notice that 

∂fi
f is orientation preserving ⇐ det 

∂xj 
(x) > 0, (5.128) ⇒ 

∂fi
f is orientation reversing ⇐ det 

∂xj 
(x) < 0. (5.129) ⇒ 

So, in general, 
∂fi 

dx. (5.130) φ(f(x)) det (x)
∂xjU 

As usual, we assumed that f ∈ C∞. 

Remark. The above is true for φ ∈ C0
1, a compactly supported continuous function. 

The proof of this is in section 5 of the Supplementary Notes. The theorem is true 
even if only f ∈ C1 (the notes prove it for f ∈ C2). 

Today we show how to compute the degree in general. 
Let U, V be connected open sets in Rn, and let f : U → V be a proper C∞ map. 

Claim. Let B be a compact subset of V , and let A = f−1(B). If U0 is an open subset 
of U with A ⊆ U0, then there exists an open subset V0 of V with B ⊆ V0 such that 
f−1(V0) ⊆ U0. 
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Proof. Let C ⊆ V be a compact set with B ⊆ Int C, and let W = f−1(C)− U0. The 
set W is compact, so the set f(W ) is also compact. Moreover, f(W ) ∩ B = φ since 
f−1(B) ⊆ U0. 

Now, let V0 = Int C − f(W ). This set is open, and 

f−1(V0) ⊆ f−1(Int C)− W 
(5.131) 

⊆ U0. 

Claim. If X ⊆ U is closed, then f(X) is closed in V . 

Proof. Take any point p ∈ V − f(x). Then f−1(p) ∈ U − X. Apply the previous 
result with B = {p}, A = f−1(p), and U0 = U − X. There exists an open set V0 � p 
such that f−1 ⊆ U − X. The set V0 ∩ f(X) = φ, so V − f(X) is open in V . 

We now remind you of Sard’s Theorem. Let f : U → V be a proper C∞ map. We 
define the critical set 

Cf = {p ∈ U : Df(p) is not bijective}. (5.132) 

The set Cf is closed. The set f(Cf ) in V is a set of measure zero. The set f(Cf ) is 
closed as well, since f is proper. 

Definition 5.18. A point q ∈ V is a regular value of f if q ∈ V − f(Cf ). 

Sard’s Theorem basically says that there are “lots” of regular values. 

Lemma 5.19. If q is a regular value, then f−1(q) is a finite set. 

Proof. First, p ∈ f−1(q) = ⇒ p /∈ Cf . So, Df(p) : Rn Rn is bijective. By the IFT, →
the map f is a diffeomorphism of a neighborhood Up of p ∈ U onto a neighborhood 
of q. In particular, since f is one­to­one and onto, 

Up ∩ f−1(q) = {p}. (5.133) 

Consider the collection {Up : p ∈ f−1(q)}, which is an open cover of f−1(q). The H­B 
Theorem tells us that there exists a finite subcover {Upi

, i = 1, . . . , N}. Hence, 

f−1(q) = {p1, . . . , pN}. (5.134) 

Theorem 5.20. The degree of f is 

N

deg(f) = σpi
, (5.135) 

i=1 
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where � 
+1 if Df(pi) is orient. preserving,

σpi 
= (5.136) 

if Df(pi) is orient. reversing.−1 

So, to calculate the degree, you just pick any regular value q and “count” the number 
of points in the pre­image of q, keeping track of the value of σpi

. 

Proof. For each pi ∈ f−1(q), let Upi 
be an open neighborhood of pi such that f maps 

Upi 
diffeomorphically onto a neighborhood of q. We can assume that the Upi

’s do not 
intersect. 

Now, choose a neighborhood V0 of q such that 

 
f−1(V0) ⊆ Upi

. (5.137) 

Next, replace each Upi 
by Upi 

∩ f−1(V0). So, we can assume the following: 

1. f is a diffeomorphism of Upi 
onto V0, � 

2. f−1(V0) = Upi
, 

3. The Upi
’s don’t intersect. 

Choose ω ∈ Ωn
c (V0) such that 

ω = 1. (5.138) 
V 

Then, 

f ∗ω = f ∗ω 
U i Upi 

= σpi 
ω (5.139) 

i V0 

= σpi
. 

i 

But, 

f ∗ω = (deg f) ω = deg f, (5.140) 
U U 

so � 
σpi 

= deg f. (5.141) 

This is a very nice theorem that is not often discussed in textbooks. 
The following is a useful application of this theorem. Suppose f−1(q) is empty, so 

q / ∈ f(Cf ), so q is a regular value. Therefore, ∈ f(U). Then q /

deg(f) = 0. (5.142) 

This implies the following useful theorem. 
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Theorem 5.21. If deg(f) = 0, then f : U V is onto. � → 

This theorem can let us know if a system of non­linear equations has a solution, 
simply by calculating the degree. The way to think about this is as follows. Let 
f = (f1, . . . , fn) and let q = (c1, . . . , cn) ∈ V . If q ∈ f(U) then there exists a solution 
x ∈ U to the system of non­linear equations 

fi(x) = ci, i = 1, . . . , n. (5.143) 
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Lecture 29

We have been studying the important invariant called the degree of f . Today we 

show that the degree is a “topological invariant.” 

5.3 Topological Invariance of Degree 

Recall that given a subset A of Rm and a function F : A → R�, we say that F is C∞ 

if it extends to a C∞ map on a neighborhood of A. 
Let U be open in Rn, let V be open in Rk, and let A = U × [0, 1]. 

Definition 5.22. Let f0, f1 : U → V be C∞ maps. The maps f0 and f1 are homotopic 
if there is a C∞ map F : U × [0, 1] → V such that F (p, 0) = f0(p) and F (p, 1) = f1(p) 
for all p ∈ U . 

Let ft : U → V be the map defined by 

ft(p) = F (p, t). (5.144) 

Note that F ∈ C∞ = So, ft : U → V , where 0 ≤ t ≤ 1, gives a family ⇒ ft ∈ C∞. 
of maps parameterized by t. The family of maps ft is called a C∞ deformation of f0 

into f1. 

Definition 5.23. The map F is a proper homotopy if for all compact sets A ⊆ V , 
the pre­image F−1(A) is compact. 

Denote by π the map π : U × [0, 1] → U that sends (p, t) → t. Let A ⊆ V 
be compact. Then B = π(F−1(A)) is compact, and for all t, f−1(A) ⊆ B. As a t 

consequence, each ft is proper. 
We concentrate on the case where U, V are open connected subsets of Rn and 

f0, f1 : U → V are proper C∞ maps. We now prove that the degree is a topological 
invariant. 

Theorem 5.24. If f0 and f1 are homotopic by a proper homotopy, then 

deg(f0) = deg(f1). (5.145) 

Proof. Let ω ∈ Ωn
c (V ) and let supp ω = A. Let F : U ×I → V be a proper homotopy 

between f0 and f1. Take B = π(F−1(A)), which is compact. For all t ∈ [0, 1], 
f−1(A) ⊆ B.t 

Let us compute f ∗ω. We can write ω = φ(x)dx1 ∧ · · · ∧ dxn, where supp φ ⊆ A.t 

So, � � 
∂Fi

f ∗ω = φ(F (x, t)) det 
∂xj 

(x, t) dx1 ∧ · · · ∧ dxn, (5.146) t 
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and


f ∗ω = deg(ft) ω. t 
U V (5.147) 

∂Fi 
= φ(F (x, t)) det (x, t) dx1 . . . dxn. 

∂xjU 

Notice that the integrand is supported in the compact set B for all t, and it is C∞ 

as a function of x and t. By Exercise #2 in section 2 of the Supplementary Notes, 
this implies that the integral is C∞ in t. From Equation 5.147, we can conclude that 
deg(ft) is a C∞ function of t. 

Now here is the trick. Last lecture we showed that deg(ft) is an integer. Since 
deg(ft) is continuous, it must be a constant deg(ft) = constant. 

We consider a simple application of the above theorem. Let U = V = R2, and 
think of R2 = C. We make the following associations: 

i2 = −1 (5.148) 

z = x + iy (5.149) 

z̄ = x − iy (5.150) 
2 2 zz̄ = |z|2 = x + y (5.151) 

dz = dx + idy (5.152) 

dz̄ = dx − idy (5.153) 

dz ∧ dz̄ =	−2idx ∧ dy (5.154) 

1 
dx ∧ dy = idz ∧ dz̄.	 (5.155) 

2 

Consider a map f : R2 R2, thinking of R2 = C, defined by → 

n−1

if(z) = z n + ciz , ci ∈ C.	 (5.156) 
i=0 

Claim. The map f is proper. 

Proof. Let C = ci . For |z > 1,| | | 
n−1

ciz 
i z .	 (5.157) ≤ C| |n−1 

i=0 

So, 

i z|f(z)| ≥ | |n − ciz 

n z− C n−1 = z| | | |
C 

(5.158)


n = |z| 1 − . 
z| | 
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For |z| > 2C, 
z|f(z)| ≥ | |n 

. (5.159) 
2 

So, if R > 1 and R > 2C, then f−1(BR) ⊆ BR1 , where Rn 
1/2 ≤ R (and where Br 

denotes the ball of radius r). So f is proper. 

Now, let us define a homotopy F : C × [0, 1] → C by 

n−1

F (z, t) = z n + t ciz 
i . (5.160) 

i=0 

We claim that F−1(BR) ⊆ BR1 × [0, 1], by exactly the same argument as above. So 
F is proper. 

Notice that 

F (z, 1) = f1(z) = f(z), (5.161) 

F (z, 0) = f0(z) = z n . (5.162) 

So, by the above theorem, deg(f) = deg(f0). 
nLet us compute deg(f0) by brute force. We have f0(z) = z , so 

n−1f0 
∗dz = dzn = nz dz, (5.163) 

nf0 
∗dz̄ = dz̄ = nz̄n−1dz̄. (5.164) 

Using the associations defined above, 

i 
f0 
∗(dx ∧ dy) = f0 

∗(dz ∧ dz̄)
2 
i 

= f0 
∗dz ∧ f0 

∗dz̄
(5.165) 2 

= 
i
n 2 z 2(n−1)dz ∧ dz̄

2 
| |

2+ n z 2n−2dx ∧ dy. | |

Let φ ∈ C0
∞(R) such that 

∞ 

φ(s)ds = 1. (5.166) 
0 

Let ω = φ( z 2)dx ∧ dy. We calculate R2 ω. Let us use polar coordinates, where | |
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2r = x2 + y = |z|. 

ω = φ(|z|2)dxdy 
R2 �R2 

= φ(r 2)rdrdθ 
R2 

= 2π 
∞ 

φ(r 2)rdr 
(5.167) 

o 
∞ ds 

+ 2π φ(s) 
20 

= π. 

Now we calculate f ∗ω. First, we note that 0 

2nf ∗ω = φ(|z| )n 2 z 2n−2dx ∧ dy. (5.168) 0 | |

So, 

∞
2f0 

∗ω = n φ(r 2n)r 2n−2rdrdθ 
0 

∞
2= n (2π) φ(r 2n)r 2n−1dr �0 (5.169) 

∞ ds2= n (2π) φ(s)
2n0 

= nπ. 

To summarize, we have calculated that 

ω = π and f0 
∗ω = nπ. (5.170) 

R2 R2 

Therefore, 
deg(f0) = deg(f) = n. (5.171) 

A better way to do the above calculation is in the homework: problem #6 of section 
6 of the Supplementary Notes. 

Last lecture we showed that if deg(f) = 0, then the map f is onto. Applying this 
to the above example, we find that the algebraic equation 

n−1

n i z + ciz = 0 (5.172) 
i=0 

has a solution. This is known as the Fundamental Theorem of Algebra. 
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Lecture 30


6 Manifolds 

6.1	 Canonical Submersion and Canonical Immersion Theo­
rems 

As part of today’s homework, you are to prove the canonical submersion and im­
mersion theorems for linear maps. We begin today’s lecture by stating these two 
theorems. 

Let A : Rn Rm be a linear map, and let [aij] be its associated matrix. We have →
the transpose map At : Rm Rn with the associated matrix [aji].→ 

Definition 6.1. Let k < n. Define the canonical submersion map π and the canonical 
immersion map ι as follows: 

Canonical submersion: 

π : Rn → Rk , (x1, . . . , xn) → (x1, . . . , xk).	 (6.1) 

Canonical immersion: 

ι : Rk → Rn , (x1, . . . , xk) → (x1, . . . , xk, 0, . . . , 0). (6.2) 

Canonical Submersion Thoerem. Let A : Rn Rk be a linear map, and suppose →
that A	 is onto. Then there exists a bijective linear map B : Rn Rn such that→
A B = π.◦ 

Proof Hint: Show that there exists a basis v1, . . . , vn of Rn such that Avi = ei, i = 
1, . . . , k, (the standard basis of Rk) and Avi = 0 for all i > k. Then let B : Rn Rn →
be the linear map Bei = vi, i = 1, . . . , n, where ei, . . . , en is the standard basis of 
Rn . 

Canonical Immersion Thoerem. As before, let k < n. Let A : Rk Rn be a 
one­to­one linear map. Then there exists a bijective linear map B : Rn 

→ 
Rn such→

that B A = ι.◦ 

tBtProof Hint: Note that B A = ι A = π. Use the Canonical Submersion ◦ ⇐⇒ 
Theorem. 

Now we prove non­linear versions of these two theorems.

Let U be an open set in Rn, and let f : U → Rk be a C ∞ map. Let p ∈ U .


Definition 6.2. The map f is a submersion at p if Df(p) : Rn Rk is onto. → 
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Canonical Submersion Thoerem. Assume that f is a submersion at p and that 
f(p) = 0. Then there exists a neighborhood U0 of p in U , a neighborhood V of 0 in 
Rn, and a diffeomorphism g : V → U0 such that f ◦ g = π. 

Proof. Let Tp : Rn → Rn be the translation defined by x → x + p. Replacing f by 
f ◦ Tp we can assume that p = 0 and f(0) = 0. 

Let A = (Df)(0), where A : Rn Rk is onto by the assumption that f is a →
submersion. So, there exists a bijective linear map B : Rn Rn such that A B = π.→ ◦
Replacing f by f ◦ B we can assume that Df(0) = π. 

Define a map h : U Rn by → 

h(x1, . . . , xn) = (f(x1, . . . , xk); xk+1, . . . , xn). (6.3) 

Note that (1)Dh(0) = I; and (2) πh = f . By (1), the function hmaps a neighborhood 
U0 of 0 in U diffeomorphically onto a neighborhood V of 0 in Rn . By (2), we have 
π = f h−1 . Take g = h−1 .◦ 

There is a companion theorem having to do with immersions. 

Definition 6.3. Let U be an open subset of Rk, and let f : U → Rn be a C∞ map. 
Let p ∈ U . The map f is an immersion at p if (Df)(p) : Rk Rn is injective →
(one­to­one). 

Canonical Immersion Thoerem. Let U be a neighborhood of 0 in Rk, and let 
f : U → Rn be a C∞ map. Assume that f is an immersion at 0. Then there exists a 
neighborhood V of f(0) = p in Rn, a neighborhood W of 0 in Rk, and a diffeomorphism 
g : V → W such that ι−1(W ) ⊆ U and g ◦ f = ι. 

Proof. Replacing f by Tp ◦ f , we can assume that f(0) = 0. Let A = Df(0), so 
A : Rk Rn is injective. There exists a linear map B : Rn Rn such that BA = ι.→ →
Replacing f by B ◦ f , we can assume that Df(0) = ι. 

Let � = n − k. Since U ⊆ Rk, we get U × R� ⊆ Rk × R� = Rn . Define a map 
h : U × R� Rn by → 

h(x1, . . . , xn) = f(x1, . . . , xk) + (0, . . . , 0, xk+1, . . . , xn). (6.4) 

One can check that (1) Dh(0) = I; and (2) h ι = f .◦
By (1), the function h maps a neighborhood W of 0 in U × R� diffeomorphically 

onto a neighborhood V of 0 in Rn . Moreover, W ⊆ U × R�, so ι−1(W ) ⊆ U . 
By (2), we obtain the canonical immersion map ι = h−1 f . Take g = h−1 .◦ 
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6.2 Definition of Manifold 

Now we move on to the study of manifolds. 
Let X be a subset of Rn, let Y be a subset of Rm, and let f : X Y be a →

continuous map. We define that the map f is a C∞ map if for every point p ∈ X 
there exists a neighborhood Up of p in Rn and a C∞ map gp : U Rn such that p → 
gp X ∩ Up = f .|

We showed in the homework that if f : X → Y is a C∞ map, then there exists a 
neighborhood U of X in Rn and a C∞ map g : U Rn extending f .→ 

Definition 6.4. A map f : X → Y is a diffeomorphism if it is one­to­one, onto, a 
C∞ map, and f−1 : Y → X is C∞. 

Let X be a subset of RN . 

Definition 6.5. The set X is an n­dimensional manifold if for every point p ∈ X 
there exists a neighborhood V of p in RN , an open set U in Rm, and a diffeomorphism 
f : U → V ∩ X. The collection (f, U,X) is called a parameterization of X at p. 

This definition does not illustrate how manifolds come up in nature. Usually 
manifolds come up in the following scenario. 

Let W be open in RN , and let fi : W → R, i = 1, . . . , � be C∞ functions. Suppose 
you want to study the solution space of 

fi(x1, . . . , xN) = 0, i = 1, . . . , �. (6.5) 

Then you consider the mapping f : W R� defined by → 

f(x) = (f1(x), . . . , f�(x)). (6.6) 

Claim. If for every p ∈ W the map f is a submersion of p, then Equation 6.6 defines 
a k­dimensional manifold, where k = N − �. 
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6.3 Examples of Manifolds 

We begin with a review of the definition of a manifold. 
Let X be a subset of Rn, let Y be a subset of Rm, and let f : X Y be a →

continuous map. 

Definition 6.6. The map f is C∞ if for every p ∈ X, there exists a neighborhood Up 
of p in Rn and a C∞ map gp : Up → Rm such that gp = f on Up ∩X. 

Claim. If f : X Y is continuous, then there exists a neighborhood U of X in Rn →
and a C∞ map g : U → Rm such that g = f on U ∩X. 

Definition 6.7. The map f : X → Y is a diffeomorphism if it is one­to­one, onto, 
and both f and f−1 are C∞ maps. 

We define the notion of a manifold. 

Definition 6.8. A subset X of RN is an n­dimensional manifold if for every p ∈ X, 
there exists a neighborhood V of p in RN , an open set U in Rn, and a diffeomorphism 
φ : U → X ∩ V . 

Intuitively, the set X is an n­dimensional manifold if locally near every point 
p ∈ X, the set X “looks like an open subset of Rn.” 

Manifolds come up in practical applications as follows: 
Let U be an open subset of RN , let k < N , and let f : RN → Rk be a C∞ map. 

Suppose that 0 is a regular value of f , that is, f−1(0) ∩ Cf = φ. 

Theorem 6.9. The set X = f−1(0) is an n­dimensional manifold, where n = N −k. 

Proof. If p ∈ f−1(0), then p /∈ Cf . So the map Df(p) : RN Rk is onto. The map →
f is a submersion at p. 

By the canonical submersion theorem, there exists a neighborhood V of 0 in Rn , 
a neighborhood U0 of p in U , and a diffeomorphism g : V U such that →

f ◦ g = π. (6.7) 

Recall that RN = R� × Rn and π : RN Rk is the map that sends →

(x, y) ∈ Rk × Rn Rk . (6.8) →

Hence, π−1(0) = {0} × Rn = Rn . By Equation 6.7, the function g maps V ∩ π−1(0) 
diffeomorphically onto U0 ∩ f−1(0). But V ∩ π−1(0) is a neighborhood of 0 in Rn and 
U0 ∩ f−1(0) is a neighborhood of p in X. 
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We give three examples of applications of the preceding theorem. 

1. We consider the n­sphere Sn . Define a map 

2 2f : Rn+1 → R, f(x) = x1 + . . .+ xn+1 − 1. (6.9) 

The derivative is (Df)(x) = 2[x1, . . . , xn+1], so Cf = {0}. If a ∈ f−1(0), then 
2 = 1, so a /ai ∈ Cf . Thus, the set f−1(0) = Sn is an n­dimensional manifold. 

2. Let g : Rn → Rk be a C∞ map. Define 

X = graph g = {(x, y) ∈ Rn × Rk : y = g(x)}. (6.10) 

Note that X ⊆ Rn × Rk = Rn+k . 

Claim. The set X is an n­dimensional manifold. 

Proof. Define a map f : Rn × Rk Rk by →

f(x, y) = y − g(x). (6.11) 

Note that Df(x, y) = [−Dg(x), Ik]. This is always of rank k, so Cf = φ. Hence, 
the graph g is an n­dimensional manifold. 

3. The following example comes from Munkres section 24, exercise #6. Let 

Mn = the set of all n× n matrices, (6.12) 

so 
Mn 

∼= Rn2 

. (6.13) 

With any element [aij] in Mn we associate a vector 

(a11, . . . , a1n, a21, . . . , a2n, . . . ). (6.14) 

Now, let 

n = n : A = At}, (6.15) S {A ∈M
so 

Sn ∼
n(n+1) 

= R 2 . (6.16) 

With any element [aij] in Sn we associate a vector 

(a11, . . . , a1n, a22, a23, . . . , a2n, a33, a34, . . . ). (6.17) 

The above association avoids the “redundancies” a12 = a21, a31 = a13, a32 = a23, 
etc. 

Define 
O(n) = {A ∈Mn : A

tA = I}, (6.18) 

which is the set of orthogonal n× n matrices. 

As an exercise, the student should prove the following claim. 
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Claim. The set O(n) ⊆Mn is an n(n−1) ­dimensional manifold.
2 

Proof Hint: First hint: Let f : M n be the map defined by n → S

f(A) = AtA− I, (6.19) 

so O(n) = f−1(0). Show that f−1(0) ∩ Cf = φ. The main idea is to show that 
if A /∈ f−1(0), then the map Df(A) : M n is onto. n → S
Second hint: Note that Df(A) is the map the sends B ∈Mn to AtB+BtA. 

Manifolds are often defined by systems of non­linear equations: 
Let f : RN → Rk be a continuous map, and suppose that Cf ∩ f−1(0) = φ. Then 

X = f−1(0) is an n­dimensional manifold. Suppose that f = (f1, . . . , fk). Then X is 
defined by the system of equations 

fi(x1, . . . , xN) = 0, i = 1, . . . , k. (6.20) 

This system of equations is called non­degenerate, since for every x ∈ X the matrix 

∂fi 
(x) (6.21) 

∂xj 

is of rank k. 

Claim. Every n­dimensional manifold X ⊆ RN can be described locally by a system 
of k non­degenerate equations of the type above. 

Proof Idea: Let X ⊆ RN be an n­dimensional manifold. Let p ∈ X, let U be an open 
subset of Rn, and let V be an open neighborhood of p in RN . Let φ : I → V ∩ X 
be a diffeomorphism. Modifying φ by a translation if necessary we can assume that 
0 ∈ U and φ(0) = p. We can think of φ as a map φ : U RN mapping U into X.→

Claim. The linear map (Dφ)(0) : Rn RN is injective. →

Proof. The map φ−1 : V ∩X → U is a C∞ map, so (shrinking V if necessary) we can 
assume there is a C∞ map ψ : V → U with ψ = φ−1 on V ∩X. Since φ maps U onto 
V ∩X, we have ψ φ = φ−1 ◦ φ = I = the identity map of U onto itself. Thus, ◦

I = D(ψ ◦ φ)(0) = (Dψ)(p)(Dφ)(0). (6.22) 

That is, Dψ(p) is a “left inverse” of Dφ(0). So, Dφ(0) is injective. 
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We can conclude that φ : U RN is an immersion at 0. The canonical immersion →
theorem tells us that there exists a neighborhood U0 of 0 in U , a neighborhood Vp of p 
in V , and a C∞ map g : V RN mapping p onto 0 and mapping Vp diffeomorphically p →
onto a neighborhood O of 0 in RN such that 

ι−1(O) = U0 (6.23) 

and 
g ◦ φ = ι (6.24) 

on U0. Here, the map ι is the canonical submersion map ι : Rn RN that maps →
(x1, . . . , xn) → (x1, . . . , xn, 0, . . . , 0). 

By Equation 6.24, the function g maps φ(U0) onto ι(U0). However, by Equa­
tion 6.23, the set ι(U0) is the subset of O defined by the equations 

xi = 0, i = n+ 1, . . . , N. (6.25) 

So, if g = (g1, . . . , gN), then φ(U0) = X ∩ Vp is defined by the equations 

gi = 0, i = n+ 1, . . . , N. (6.26) 

Moreover, the N ×N matrix 
∂gi 

(x) (6.27) 
∂xj 

is of rank N at every point x ∈ Vp, since g : Vp → O is a diffeomorphism. Hence, the 
last N − n row vectors of this matrix 

∂gi ∂gi 
, . . . , , i = n+ 1, . . . , N, (6.28) 

∂x1 ∂xN 

are linearly independent at every point x ∈ Vp. 
Now let k = N − n and let fi = gi+n, i = 1, . . . , k. Then X ∩ Vp is defined by the 

equations 
fi(x) = 0, i = 1, . . . , k, (6.29) 

and the k ×N matrix 
∂fi 

(x) (6.30) 
∂xk 

is of rank k at all points x ∈ Vp. In other words, the system of equations 6.29 is 
non­degenerate. 
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6.4 Tangent Spaces of Manifolds 

We generalize our earlier discussion of tangent spaces to tangent spaces of manifolds. 
First we review our earlier treatment of tangent spaces. 

Let p ∈ Rn . We define 

TpRn = {(p, v) : v ∈ Rn}. (6.31) 

Of course, we associate TpRn ∼ Rn by the map (p, v) → v.= 
If U is open in Rn , V is open in Rk, and f : (U, p) → (V, q) (meaning that f 

maps U → V and p → p1) is a C∞ map, then we have the map dfp : TpRn TqRk . 
∼

→
Via the identifications TpRn = Rn and TpRk ∼ Rk, the map dfp is just the map = 
Df(p) : Rn Rk . Because these two maps can be identified, we can use the chain →
rule for C∞ maps. Specifically, if f : (U, p) → (V, q) and g : (V, q) → (R�, w), then 

d(g ◦ f)p = (dg)q ◦ (df)p, (6.32) 

because (Dg)(q)(Df(p)) = (Dg ◦ f)(p). 
You might be wondering: Why did we make everything more complicated by using 

df instead of Df? The answer is because we are going to generalize from Euclidean 
space to manifolds. 

Remember, a set X ⊆ RN is an n­dimensional manifold if for every p ∈ X, there 
exists a neighborhood V of p in RN , an open set U in Rn, and a diffeomorphism 
φ : U → V ∩ X. The map φ : U → V ∩ X is called a parameterization of X at p. 

Let us think of φ as a map φ : U → RN with Im φ ⊆ X. 

Claim. Let φ−1(p) = q. Then the map (dφ)q : TqRn TpRN is one­to­one. → 

Reminder of proof: The map φ−1 : V ∩ X → U is a C∞ map. So, shrinking V if 
necessary, we can assume that this map extends to a map ψ : V U such that →
ψ = φ−1 on X ∩ V . Then note that for any u ∈ U , we have ψ(φ(u)) = φ−1(φ(u)) = u. 
So, ψ ◦ φ = idU = the identity on U . 

Using the chain rule, and letting φ(q) = p, we get 

d(ψ ◦ φ)q = (dψ)o ◦ (dφ)q 
(6.33) 

= (d(idU))q. 

So, (dφ)q is injective. 

Today we define for any p ∈ X the tangent space TpX, which will be a vector 
subspace TpX ⊆ TpRN . The tangent space will be like in elementary calculus, that 
is, a space tangent to some surface. 

Let φ : U → V ∩ X be a parameterization of X, and let φ(q) = p. The above 
claim tells us that (dφ)q : TqRn TpRN is injective. → 
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Definition 6.10. We define the tangent space of a manifold X to be 

TpX = Im (dφ)q. (6.34) 

Because (dφ)q is injective, the space TpX is n­dimensional. 
We would like to show that the space TpX does not depend on the choice of 

parameterization φ. To do so, we will make use of an equivalent definition for the 
tangent space TpX. 

Last time we showed that given p ∈ X ⊆ RN , and k = N − n, there exists a 
neighborhood V of p in RN and a C∞ map f : V Rk mapping f(p) = 0 such that →
X ∩ V = f−1(0). Note that f−1(0) ∩ Cf = φ (where here φ is the empty set). 

We motivate the second definition of the tangent space. Since p ∈ f−1(0), the 
point p /∈ Cf . So, the map dfp : TpRN T0Rk is surjective. So, the kernel of dfp in 
TpRN is of dimension N − k = n. 

→ 

Definition 6.11. An alternate definition for the tangent space of a manifold is 

TpX = ker dfp. (6.35) 

Claim. These two definitions for the tangent space TpX are equivalent. 

Proof. Let φ : U → V ∩ X be a parameterization of X at p with φ(p) = q. The 
function f : V → Rk has the property that f−1(0) = X ∩ V . So, f ◦ φ ≡ 0. Applying 
the chain rule, 

(dfp) ◦ (dφq) = d(0) = 0. (6.36) 

So, Im dφq = ker dfp. 

We can now explain why the tangent space TpX is independent of the chosen 
parameterization. We have two definitions for the tangent space. The first does not 
depend on the choice of φ, and the second does not depend on choice of f . Therefore, 
the tangent space depends on neither. 

Lemma 6.12. Let W be an open subset of R�, and let g : W → Rn be a C∞ map. 
Suppose that g(W ) ⊆ X and that g(w) = p, where w ∈ W . Then (dg)W ⊆ TpX. 

Proof Hint: We leave the proof as an exercise. As above, we have a map f : V Rk →
such that X ∩ V = f−1(0) and TpX = ker dfp. Let W1 = g−1(V ), and consider the 
map f ◦ g : W1 → Rk . As before, f ◦ g = 0, so dfp ◦ dgw = 0. 

Suppose that X ⊆ RN is an n­dimensional manifold and Y ⊆ R� is an m­
dimensional manifold. Let f : X → Y be a C∞ map, and let f(p) = q.. We want to 
define a linear map 

dfp : TpX TqY. (6.37) → 

Let v be a neighbor hood of p in RN , and let g : V R� be a map such that g = f 
on V ∩ X. By definition TpX ⊆ TpRN , so we have 

→ 

dgp : TpRN TqRk . (6.38) → 

We define the map dfp to be the restriction of dgp to the tangent space TpX. 
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Definition 6.13. 
dfp = dgp|TpX. (6.39) 

There are two questions about this definition that should have us worried: 

1. Is Im dgp(TpX) a subset of TqY ? 

2. Does this definition depend on the choice of g? 

We address these two questions here: 

1. Is Im dgp(TpX) a subset of TqY ? 

Let U be an open subset of RN , let q = f(p), and let φ : U → X ∩ V be a 
parameterization of X at p. As before, let us think of φ as a map φ : U RN →
with φ(U) ⊆ X. 

By definition, TpX = Im (dφ)r, where φ(r) = p. So, given v ∈ TpX, one can

always find w ∈ TrRn with v = (dφ)rw.


Now, is it true that (dg)p(v) ∈ TqY ? We have


(dg)pv = (dg)p(dφ)r(w) 
(6.40) 

= d(g ◦ φ)r(w), 

and the map (g ◦ φ) is of the form g ◦ φ : U Y , so → 

d(g ◦ φ)r(w) ∈ TqY. (6.41) 

2. Does the definition depend on the choice of g? 

Consider two such maps g1, g2 : V → R� . The satisfy g1 = g2 = f on X ∩ V . 
Then, with v, w as above, 

(dg1)p(v) = d(g1 ◦ φ)r(w) (6.42) 

(dg2)p(v) = d(g2 ◦ φ)r(w). (6.43) 

Since g1 = g2 on X ∩ V , we have 

g1 ◦ φ = g2 ◦ φ = f φ. (6.44) ◦ 

Hence, 
d(g1 ◦ φ)r(w) = d(g2 ◦ φ)r(w). (6.45) 

As an exercise, show that the chain rule also generalizes to manifolds as follows: 
Suppose that X1, X2, X3 are manifolds with Xi ⊆ RNi , and let f : X1 → X2 and 
g : X2 → X3 be C∞ maps. Let f(p) = q and g(q) = r. 

Show the following claim. 
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Claim.

d(g ◦ f)p = (dgq) ◦ (df)q. (6.46) 

Proof Hint: Let V1 be a neighborhood of p in RN1 , and let V2 be a neighborhood of 
q in RN2 . Let f̃ : V1 → V2 be an extension of f to V1, and let ˜ : V2 → be an g RN3 

extension of g to V2. 
˜The chain rule for f, g follows from the chain rule for f, g̃. 
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6.5 Differential Forms on Manifolds 

Let U ⊆ Rn be open. By definition, a k­form ω on U is a function which assigns to 
each point p ∈ U an element ωp ∈ Λk(T ∗Rn).p 

We now define the notion of a k­form on a manifold. Let X ⊆ RN be an n ­
dimensional manifold. Then, for p ∈ X , the tangent space TpX ⊆ TpRN . 

Definition 6.14. A k­form ω on X is a function on X which assigns to each point 
p ∈ X an element ωp ∈ Λk((TpX )

∗). 

Suppose that f : X → R is a C∞ map, and let f (p) = a . Then dfp is of the form 

dfp : TpX TaR ∼ R. (6.47) = → 

We can think of dfp ∈ (TpX )∗ = Λ1((TpX )
∗). So, we get a one­form df on X which 

maps each p ∈ X to dfp. 
Now, suppose 

µ is a k­form on X , and (6.48) 

ν is an �­form on X . (6.49) 

For p ∈ X , we have 

µp ∈ Λk(T ∗X ) and (6.50) p 

νp ∈ Λ�(T ∗X ). (6.51) p 

Taking the wedge product, 
µp ∧ νp ∈ Λk+�(T ∗X ). (6.52) p 

The wedge product µ ∧ ν is the (k + �)­form mapping p ∈ X to µp ∧ νp. 
Now we consider the pullback operation. Let X ⊆ RN and Y ⊆ R� be manifolds, 

and let f : X → Y be a C∞ map. Let p ∈ X and a = f (p). We have the map 

dfp : TpX TaY. (6.53) → 

From this we get the pullback 

(dfp)
∗ : Λk(Ta 

∗Y ) → Λk(T ∗X ). (6.54) p 

Let ω be a k­form on Y . Then f ∗ω is defined by 

(f ∗ω)p = (dfp)
∗ωq. (6.55) 
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Let f : X → Y and g : Y → Z be C∞ maps on manifolds X, Y, Z. Let ω be a 
k­form. Then 

(g ◦ f)∗ω = f ∗(g∗ω), (6.56) 

where g ◦ f : X Z.→
So far, the treatment of k­forms for manifolds has been basically the same as our 

earlier treatment of k­forms. However, the treatment for manifolds becomes more 
complicated when we study C∞ forms. 

Let U be an open subset of Rn, and let ω be a k­form on U . We can write 

ω = aI(x)dxi1 ∧ · · · ∧ dxik , I = (i1, . . . , ik). (6.57) 

By definition, we say that ω ∈ Ωk(U) if each AI ∈ C∞(U). 
Let V be an open subset of Rk, and let f : U → V be a C∞ map. Let ω ∈ Ωk(V ). 

Then f ∗ω ∈ Ωk(U). Now, we want to define what we mean by a C∞ form on a 
manifold. 

Let X ⊆ Rn be an n­dimensional manifold, and let p ∈ X. There exists an open 
set U in RN , a neighborhood V of p in RN , and a diffeomorphism φ : U → V ∩ X. 
The diffeomorphism φ is a parameterization of X at p. 

We can think of φ in the following two ways: 

1. as a map of U onto V ∩X, or 

2. as a map of U onto V , whose image is contained in X. 

The second way of thinking about φ is actually the map ιX ◦φ, where ιX : X RN is→
the inclusion map. Note that ιX : X → RN is C∞, because it extends to the identity 
map I : RN RN .→

We give two equivalent definitions for C∞ k­forms. Let ω be a k­form on X. 

Definition 6.15. The k­form ω is C∞ at p if there exists a k­form ω̃ ∈ Ωk(V ) such 
˜that ι∗ w = ω.X 

Definition 6.16. The k­form ω is C∞ at p if there exists a diffeomorphism φ : U 
V ∩ U such that φ∗ω ∈ Ωk(U). 

→ 

The first definition depends only on the choice of ω̃, and the second definition 
depends only on the choice of φ. So, if the definitions are equivalent, then neither 
definition depends on the choice of ω̃ or the choice of φ.


We show that these two definitions are indeed equivalent.


Claim. The above two definitions are equivalent. 

˜Proof. First, we show that (def 6.15) = ⇒ (def 6.16). Let ω = ι∗ ω. Then φ∗ω = X 

ω. The map ι φ : U → V is C∞, and ˜ ω ∈ Ωk(U).(ιX ◦φ)∗ ̃ ◦ ω ∈ Ωk(v), so φ∗ω = (ιX ◦φ)∗ ̃
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Second, we show that (def 6.16) = ⇒ (def 6.15). Let φ : U → V ∩ U be a 
diffeomorphism. Then φ−1 : V ∩X U can be extended to ψ : V U , where ψ is→ →
C∞. On V ∩X, the map φ = ι∗ ω, where ˜ ω is˜ ω = ψ∗(φ∗ω). It is easy to show that ˜X 

C∞. 

Definition 6.17. The k­form ω is C∞ if ω is C∞ at p for every point p ∈ X. 

Notation. If ω is C∞, then ω ∈ Ωk(X). 

Theorem 6.18. If ω ∈ Ωk(X), then there exists a neighborhood W of X in RN and 
a k­form ˜ X ˜ω ∈ Ωk(W ) such that ι∗ ω = w. 

Proof. Let p ∈ X. There exists a neighborhood Vp of p in RN and a k­form ωp ∈
Ωk(Vp) such that ι∗ ωp = ω on Vp ∩X.X

Let 

 
Vp. (6.58) W ⊆ 

p∈X 

The collection of sets {Vp : p ∈ X} is an open cover of W . Let ρ1, i = 1, 2, 3, . . . , be 
a partition of unity subordinate to this cover. So, ρi ∈ C0

∞(W ) and supp ρi ⊂ Vp for 
some p. Let 

ρiω
p on Vp,

ω̃i = (6.59) 
0 elsewhere. 

Notice that 

ι∗ ˜ = ι∗ ρiι
∗ ωp Xωi X X

= (ι∗ ρi)ω. 
(6.60) 

X

Take 
∞

ω = ωi. (6.61) ˜ ˜
i=1 

This sum makes sense since we used a partition of unity. From the sum, we can see 
that w̃ ∈ Ωk(W ). Finally, 

ι∗ w = (ι∗ ρi)ωX ˜ X 
(6.62) 

= ω. 

Theorem 6.19. Let X ⊆ RN and Y ⊆ R� be manifolds, and let f : X → Y be a C∞ 

map. If ω ∈ Ωk(X), then f ∗ω ∈ Ωk(Y ). 
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Proof. Take an open set W in R� such that W ⊃ Y , and take ω̃ ∈ Ωk(W ) such that 
˜ι∗ ω = ω. Take any p ∈ X and φ : U → V a parameterization of X at p. 
We show that the pullback φ∗(f∗ω) is in Ωk(U). We can write 

φ∗(f ∗ω) = φ∗f ∗(ι∗ w)˜X (6.63) 
= (ι f φ)∗ ω̃, ◦ ◦ 

where in the last step we used the chain rule. 
˜The form ω ∈ Ωk(W ), where W is open in R�, so ι f φ : U W . The◦ ◦ →

theorem that we proved on Euclidean spaces shows that the r.h.s of Equation 6.63 is 
in Ωk(U). 

The student should check the following claim: 

Claim. If µ, ν ∈ Ωk(Y ), then 

f ∗(µ ∧ ν) = f ∗µ ∧ f ∗ν. (6.64) 

The differential operation d is an important operator on k­forms on manifolds. 

d : Ωk(X) → Ωk+1(X). (6.65) 

Let X ⊆ RN be a manifold, and let ω ∈ Ωk(X). There exists an open neighborhood 
W of X in RN and a k­form ˜ X ˜ω ∈ Ωk(W ) such that ι∗ ω = ω. 

Definition 6.20. dω = ι∗ dω̃.X

Why is this definition well­defined? It seems to depend on the choice of ω̃. 
Take a parameterization φ : U → V ∩ X of X at p. Then 

φ∗ι∗ d˜ ωω = (ιX ◦ φ)∗d˜X

= d(ιX ◦ φ)∗ω 
(6.66) 

= dφ∗(ι∗ ω)X ˜

= dφ∗ω. 

So, 
φ∗ι∗ dω̃ = dφ∗ω. (6.67) X

Take the inverse mapping φ−1 : V ∩ X U and take the pullback (φ−1)∗ of each side →
of Equation 6.67, to obtain 

Xd˜ι∗ ω = (φ−1)∗dφ∗ω. (6.68) 

The r.h.s does not depend on ω̃, so neither does the l.h.s. 
To summarize this lecture, everything we did with k­forms on Euclidean space 

applies to k­forms on manifolds. 
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6.6 Orientation of Manifolds 

Let X be an n­dimensional manifold in RN . Assume that X is a closed subset of RN . 
Let f : X → R be a C ∞ map. 

Definition 6.21. We remind you that the support of f is defined to be 

supp f = { x ∈ X : f(x) = 0} . (6.69) 

Since X is closed, we don’t have to worry about whether we are taking the closure 
in X or in Rn . 

Note that 
f ∈ C ∞0 (X) ⇐⇒ supp f is compact. (6.70) 

Let ω ∈ Ωk(X). Then 
supp ω = { p ∈ X : ωp � = 0} . (6.71) 

We use the notation 

ω ∈ Ωk supp ω is compact. (6.72) c (X) ⇐⇒


We will be using partitions of unity, so we remind you of the definition:


Definition 6.22. A collection of functions { ρi ∈ C 0
∞(X) : i = 1, 2, 3, . . . } is a partition 

of unity if 

1. 0 ≤ ρi, 

2. For every compact set A ⊆ X, there exists N > 0 such that supp ρi ∩ A = φ 
for all i > N , 

3. ρi = 1. 

Suppose the collection of sets U = { Uα : α ∈ I} is a covering of X by open subsets 
Uα of X. 

Definition 6.23. The partition of unity ρi, i = 1, 2, 3, . . . , is subordinate to U if for 
every i, there exists α ∈ I such that supp ρi ⊆ Uα. 

Claim. Given a collection of sets U = { Uα : α ∈ I} , there exists a partition of unity 
subordinate to U . 
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˜ ˜Proof. For each α ∈ I, let Uα be an open set in RN such that Uα = Uα ∩ X. We 
˜define the collection of sets U = { ̃ LetUα : α ∈ I}. 

 

˜ ˜U = Uα. (6.73) 

From our study of Euclidean space, we know that there exists a partition of unity 
˜ 0 (Ũ), i = 1, 2, 3, . . . , subordinate to Ũ . Let ιX : X Ũ be the inclusion map. ρi ∈ C∞ →
Then 

ρi = ρ̃i ◦ ιX = ι∗ ρ̃i, (6.74) X 

which you should check. 

We review orientations in Euclidean space before generalizing to manifolds. For a 
more comprehensive review, read section 7 of the Multi­linear Algebra notes. 

Suppose L is a one­dimensional vector space and that v ∈ L−{0}. The set L−{0}
has two components: 

{λv : λ > 0} and {λv : λ < 0}. (6.75) 

Definition 6.24. An orientation of L is a choice of one of these components. 

Notation. We call the preferred component L+ (the positive component). We call 
the other component L− (the negative component). 

We define a vector v to be positively oriented if v ∈ L+. 
Now, let V be an n­dimensional vector space. 

Definition 6.25. An orientation of V is an orientation of the one­dimensional vector 
space Λn(V ∗). That is, an orientation of V is a choice of Λn(V ∗)+. 

Suppose that V1, V2 are oriented n­dimensional vector spaces, and let A : V1 → V2 

be a bijective linear map. 

Definition 6.26. The map A is orientation preserving if 

ω ∈ Λn(V2)+ = (6.76) ⇒ A∗ω ∈ Λn(V1)+. 

Suppose that V3 is also an oriented n­dimensional vector space, and let B : V2 → V3 

be a bijective linear map. If A and B are orientation preserving, then BA is also 
orientation preserving. 

Finally, let us generalize the notion of orientation to orientations of manifolds. 
Let X ⊆ RN be an n­dimensional manifold. 

Definition 6.27. An orientation of X is a function on X which assigns to each point 
p ∈ X an orientation of TpX. 
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We give two examples of orientations of a manifold: 
Example 1: Let ω ∈ Λn(X), and suppose that ω is nowhere vanishing. Orient X 

by assigning to p ∈ X the orientation of TpX for which ωp ∈ Λn(T ∗X)+.p


Example 2: Take X = U , an open subset of Rn, and let


ω = dx1 ∧ · · · ∧ dxn. (6.77) 

Define an orientation as in the first example. This orientation is called the standard 
orientation of U . 

Definition 6.28. An orientation of X is a C∞ orientation if for every point p ∈ X, 
there exists a neighborhood U of p in X and an n­form ω ∈ Ωn(U) such that for all 
points q ∈ U , ωq ∈ Λn(T ∗X)+.q 

From now on, we will only consider C∞ orientations. 

Theorem 6.29. If X is oriented, then there exists ω ∈ Ωn(X) such that for all 
p ∈ X, ωp ∈ Λn(Tp 

∗X)+. 

Proof. For every point p ∈ X, there exists a neighborhood Up of p and an n­ form 
ω(p) ∈ Ωn(Up) such that for all q ∈ Up, (ω(p))q ∈ Λn(T ∗ X)+.Q

Take ρi, i = 1, 2, . . . , a partition of unity subordinate to U = {Up : p ∈ X}. For 
every i, there exists a point p such that ρi ∈ C0

∞(Up). Let 

ρiω
(p) on Up,

ωi = (6.78) 
0 on the X − Up. 

Since the ρi’s are compactly supported, ωi is a C∞ map. Let 

ω = ωi. (6.79) 

One can check that ω is positively oriented at every point. 

Definition 6.30. An n­form ω ∈ Ωn(X) with the property hypothesized in the above 
theorem is called a volume form. 

Remark. If ω1, ω2 are volume forms, then we can write ω2 = fω1, for some f ∈ 
C∞(X) (where f = 0 everywhere). In general, f(p) > 0 because (ω1)p, (ω2)p ∈
Λn(T ∗X)+. So, if ω1, ω2 are volume forms, then ω2 = fω1, for some f ∈ C∞(X) such p 

that f > 0. 

Remark. Problem #6 on the homework asks you to show that if X is orientable and 
connected, then there are exactly two ways to orient it. This is easily proved using 
the above Remark. 

144 



� � 

� � 

Suppose that X ⊆ Rn is a one­dimensional manifold (a “curve”). Then TpX is 
one­dimensional. We can find vectors v,−v ∈ TpX such that ||v|| = 1. An orientation 
of X is just a choice of v or −v. 

Now, suppose that X is an (n − 1)­dimensional manifold in Rn . Define 

NpX = {v ∈ TpRn : v ⊥ w for all w ∈ TpX}. (6.80) 

Then dim NpX = 1, so you can find v,−v ∈ NpX such that ||v|| = 1. By Exercise #5 
in section 4 of the Multi­linear Algebra Notes, an orientation of TpX is just a choice 
of v or −v. 

Suppose X1, X2 are oriented n­dimensional manifolds, and let f : X1 → X2 be a 
diffeomorphism. 

Definition 6.31. The map f is orientation preserving if for every p ∈ X1, 

dfp : TpX1 → TqX2 (6.81) 

is orientation preserving, where q = f(p). 

Remark. Let ω2 be a volume form on X2. Then f is orientation preserving if and 
only if f ∗ω2 = ω1 is a volume form on X1. 

We look at an example of what it means for a map to be orientation preserving. 
Let U, V be open sets on Rn with the standard orientation. Let f : U V be a →
diffeomorphism. So, by definition, the form 

(6.82) dx1 ∧ · · · ∧ dxn 

is a volume form of V . The form 

∂fi 
= det (6.83) f ∗dx1 ∧ · · · ∧ dxn 

∂xj 
dx1 ∧ · · · ∧ dxn 

is a volume form of U if and only if 

∂fi
det > 0, (6.84) 

∂xj 

that is, if and only if f is orientation preserving in our old sense. 
Now that we have studied orientations of manifolds, we have all of the ingredients 

we need to study integration theory for manifolds. 
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Before moving on to integration, we make a few more remarks about orientations. 
Let X, Y be oriented manifolds. A diffeomorphism f : X Y is orientation →

preserving if for every p ∈ X, the map 

dfp : TpX TqY (6.85) →

is orientation preserving, where q = f(p). 
Let V be open in X, let U be open in Rn, and let φ : U → V be a parameterization. 

Definition 6.32. The map φ is an oriented parameterization if it is orientation pre­
serving. 

Suppose φ is orientation reversing. Let A : Rn Rn be the linear map defined by →

A(x1, . . . , xn) = (−x1, x2, . . . , xn). (6.86) 

The map A is orientation reversing. Let U � = A−1(U), and define φ� = φ A : U � V .◦ →
Both φ and A are orientation reversing, so φ� is orientation preserving. 

Thus, for every point p ∈ X, there exists an oriented parameterization of X at p. 

6.7 Integration on Manifolds 

Our goal for today is to take any ω ∈ Ωn
c (X) and define � 
ω. (6.87) 

X 

First, we consider a special case:

Let φ : U V be an oriented parameterization. Let U be open in Rn, and let V
→

be open in X. Take any ω ∈ Ωc
n(V ). Then 

ω = φ∗ω, (6.88) 
V U 

where φ∗ω = n, where f ∈ C0
∞(U) andf(x)dx1 ∧ · · · ∧ dx

φ∗ω = f. (6.89) 
U U 

Claim. The above definition for ω does not depend on the choice of oriented pa­
rameterization φ. 
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Proof. Let φi : Ui → V, i = 1, 2, be oriented parameterizations. Let ω ∈ Ωn
c (V1 ∩ V2). 

Define 

U1,2 = φ−1(V1 ∩ V2),	 (6.90) 1 

U2,1 = φ−1(V1 ∩ V2), (6.91) 2 

which are open sets in Rn . 
Both φ1 and φ2 are diffeomorphisms, and we have the diagram 

V1 ∩ V2 

φ1 

�⏐⏐ 

V1 ∩ V2 

φ2 

�⏐⏐ (6.92) 

f 
U2,1.U1,2 −−−→ 

Therefore, f = φ−1 ◦ φ1 is a diffeomorphism, and φ1 = φ2 ◦ f . Integrating, 2 

φ∗ω = φ∗ω1 1
U1 U1,2 

= (φ2 ◦ f)∗ω	 (6.93) 
U1,2 

= f ∗(φ∗ω).2
U1,2 

Note that f is orientation preserving, because φ1 and φ2 are orientation preserving. 
Using the change of variables formula, 

2ω = φ∗f ∗φ∗ 
2ω 

U1,2 U2,1 (6.94) 

= φ∗ω. 2
U2 

(V V ),∩1 2c � 
So, for all ω ∈ Ωn 

ω = φ∗ 
2ω = ω.	 (6.95) 1ω = φ∗ 

V1 U1 U2 V2 

Above, we showed above how to take integrals over open sets, and now we gener­
alize. 

To define the integral, we need the following two inputs: 

� 1.	 a set of oriented parameterizations φi : Ui → Vi, i = 1, 2, . . . , such that X = 
Vi, 
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2. a partition of unity ρi ∈ C0
∞(Vi) subordinate to the cover {Vi}. 

Definition 6.33. Let ω ∈ Ωn
c (X). We define the integral � ∞ � 

ω = ρiω. (6.96) 
X i=1 Vi 

One can check various standard properties of integrals, such as linearity: 

ω1 + ω2 = ω1 + ω2. (6.97) 
X X X 

We now show that this definition is independent of the choice of the two inputs 
(the parameterizations and the partition of unity). 

Consider two different inputs: � 
1. oriented parameterizations φj

� : Uj
� → Vj

�, j = 1, 2, . . . , such that X = Vj
�, 

2. a partition of unity ρ�i ∈ C0
∞(Vj

�) subordinate to the cover {V � .j }

Then, 

∞

ρiω = ρ�jω 
Vi Vi j=1 

∞ � 
= ρiρ

�
jω (6.98) 

j=1 Vi 

∞ � 
= ρiρ

�
jω. 

j=1 Vi∩Vj
�

Summing over i, � ∞ � 
ρiω = ρiρ

�
jω 

i Vi i,j=1 Vi∩Vj
��� (6.99) 

= ρj
�ω, 

j Vj
�

where the first term equals the last term by symmetry. Therefore, the integral ω is 
independent of the choices of these two inputs. 

Let X ⊆ RN be an oriented connected n­dimensional manifold. 

Theorem 6.34. For any ω ∈ Ωn
c (X), the following are equivalent: 

1. ω = 0,
X 
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c 2. ω ∈ dΩn−1(X). 

Proof. This will be a five step proof: 
Step 1: The following lemma is called the Connectivity Lemma. 

Lemma 6.35. Given p, q ∈ X, there exists open sets Wj, j = 0, . . . , N +1, such that 
each Wj is diffeomorphic to an open set in Rn, and such that p ∈ W0, q ∈ WN+1, and 
Wi ∩Wi+1 = φ. 

Proof Idea: Fix p. The points q for which this is true form an open set. The points 
q for which this isn’t true also form an open set. Since X is connected, only one of 
these sets is in X. 

Step 2: Let ω1, ω2 ∈ Ωn
c (X). We say that ω1 ∼ ω2 if 

ω1 = ω2. (6.100) 
X X 

We can restate the theorem as 

ω1 ∼ ω2 ⇐⇒ ω1 − ω2 ∈ dΩn−1(X). (6.101) c 

Step 3: It suffices to prove the statement (6.101) for ω1 ∈ Ωn
c (V ) and ω2 ∈ Ωc

n(V �), 
where V, V � are diffeomorphic to open sets in Rn . 

Step 4: We use a partition of unity 

Lemma 6.36. The theorem is true if V = V �. 

Proof. Let φ : U → V be an orientation preserving parameterization. If ω1 ∼ ω2, 
then � � 

φ∗ω1 = φ∗ω2, (6.102) 

which is the same as saying that 

φ∗ω1 − φ∗ω2 ∈ dΩn−1(U), (6.103) c 

which is the same as saying that 

ω1 − ω2 ∈ dΩn−1(V ). (6.104) c 

Step 5: In general, by the Connectivity Lemma, there exists sets Wi, i = 0, . . . , N+ 
1, such that each Wi is diffeomorphic to an open set in Rn . We can choose W0 = V 
and WN+1 = V � and Wi ∩Wi+1 = φ (where φ here is the empty set). 

We can choose µi ∈ Ωn
c (Wi ∩Wi+1) such that 

c = ω1 = µ0 = · · · = µN+1 = ω2. (6.105) 
V V � 
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So, 
(6.106) ω1 ∼ µ0 ∼ · · · ∼ µN ∼ ω2. 

We know that µ0−ω1 ∈ dΩn−1 and ω2−µN+1 ∈ dΩn−1 Also, each difference ωi−ωi+1 ∈c C 

dΩn−1 . Therefore, ω1 − ω2 ∈ dΩn−1 .c c 

6.8 Degree on Manifolds 

Suppose that X1, X2 are oriented n­dimensional manifolds, and let f : X1 → X2 be 
a proper map (that is, for every compact set A ⊆ X, the set pre­image f−1(A) is 
compact). It follows that if ω ∈ Ωc

k(X2), then f ∗ω ∈ Ωc
k(X1). 

Theorem 6.37. If X1, X2 are connected and f : X1 → X2
� is a proper C∞ map, then 

there exists a topological invariant of f (called the degree of f) written deg(f) such 
that for every ω ∈ Ωn

c (X2), 

f ∗ω = deg(f) ω. (6.107) 
X1 X2 

Proof. The proof is pretty much verbatim of the proof in Euclidean space. 

Let us look at a special case. Let φ1 : U → V be an oriented parameterization, 
and let V1 be open in X1. Let f : X1 → X2 be an oriented diffeomorphism. Define 
φ2 = f φ1, which is of the form φ2 : U → V2, where V2 = f(V1). Notice that φ2 is◦
an oriented parameterization of V2. 

Take ω ∈ Ωn
c (V2) and compute the integral 

f ∗ω = φ∗f ∗ω1
V1 �U 

= (f φ1)
∗ω (6.108) ◦�U 

= φ∗ω. 2
U 

The n­form ω is compactly supported on V2, so 

f ∗ω = φ∗ω2
V1 �U (6.109) 

= ω. 
X2 

On the other hand, 

f ∗ω = f ∗ω. (6.110) 
X1 V1 
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Combining these results, 

f ∗ω = ω. (6.111) 
X1 X2 

Therefore, 
deg(f) = 1. (6.112) 

So, we have proved the following theorem, which is the Change of Variables the­
orem for manifolds: 

Theorem 6.38. Let X1, X2 be connected oriented n­dimensional manifolds, and let 
f : X1 → X2 be an orientation preserving diffeomorphism. Then, for all ω ∈ Ωc

n(X2), 

f ∗ω = ω. (6.113) 
X1 X2 
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The first problem on today’s homework will be to prove the inverse function 

theorem for manifolds. Here we state the theorem and provide a sketch of the proof. 
Let X, Y be n­dimensional manifolds, and let f : X → Y be a C ∞ map with 

f(p) = p1. 

Theorem 6.39. If dfp : TpX → Tp1Y is bijective, then f maps a neighborhood V of 
p diffeomorphically onto a neighborhood V1 of p1. 

Sketch of proof: Let φ : U → V be a parameterization of X at p, with φ(q) = p. 
Similarly, let φ1 : U1 → V1 be a parameterization of Y at p1, with φ1(q1) = p1. 

Show that we can assume that f : V → V1 (Hint: if not, replace V by V ∩ f−1(V1)). 
Show that we have a diagram 

�⏐⏐ 

f 
V V1−−−→ �⏐⏐
 (6.114) φ φ1 

g−−−→ U U1, 

which defines g, 

g = φ−1 
1 ◦ f ◦ φ, (6.115) 

g(q) = q1. (6.116) 

So, 
(dg)q = (dφ1)

−1 
q1 
◦ dfp ◦ (dφ)q. (6.117) 

Note that all three of the linear maps on the r.h.s. are bijective, so (dg)q is a bijection. 
Use the Inverse Function Theorem for open sets in Rn . 

This ends our explanation of the first homework problem.

Last time we showed the following. Let X, Y be n­dimensional manifolds, and let


f : X → Y be a proper C ∞ map. We can define a topological invariant deg(f) such 
that for every ω ∈ Ωn

c (Y ), 

f ∗ω = deg(f) ω. (6.118) 
X Y 

There is a recipe for calculating the degree, which we state in the following theo­
rem. We lead into the theorem with the following lemma. 

First, remember that we defined the set Cf of critical points of f by 

⇐ ⇒ dfp : TpX → TqY is not surjective, (6.119) p ∈ Cf 

where q = f(p). 
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Lemma 6.40. Suppose that q ∈ Y − f(Cf ). Then f−1(q) is a finite set. 

Proof. Take p ∈ f−1(q). Since p / Cf , the map dfp is bijective. The Inverse Function ∈
Theorem tells us that f maps a neighborhood Up of p diffeomorphically onto an open 
neighborhood of q. So, Up ∩ f−1(q) = p. 

Next, note that { Up : p ∈ f−1(q)} is an open covering of f−1(q). Since f is 
proper, f−1(q) is compact, so there exists a finite subcover Up1 , . . . , UpN 

. Therefore, 
f−1(q) = { p1, . . . , pN} . 

The following theorem gives a recipe for computing the degree. 

Theorem 6.41. 
N

deg(f) = σpi
,	 (6.120) 

i=1 

where 

σpi 
= 

+1 if dfpi 
: Tpi

X → TqY is orientation preserving, 
(6.121) 

if dfpi 
: Tpi

X → TqY is orientation reversing,− 1 

Proof. The proof is basically the same as the proof in Euclidean space. 

We say that q ∈ Y is a regular value of f if q / f(Cf ). Do regular values exist? ∈
We showed that in the Euclidean case, the set of non­regular values is of measure zero 
(Sard’s Theorem). The following theorem is the analogous theorem for manifolds. 

Theorem 6.42. If q0 ∈ Y and W is a neighborhood of q0 in Y , then W − f(Cf ) is 
non­empty. That is, every neighborhood of q0 contains a regular value (this is known 
as the Volume Theorem). 

Proof. We reduce to Sard’s Theorem. 
The set f−1(q0) is a compact set, so we can cover f−1(q0) by open sets Vi ⊂ X, i = 

1, . . . , N , such that each Vi is diffeomorphic to an open set in Rn . 
Let W be a neighborhood of q0 in Y . We can assume the following: 

1. W is diffeomorphic to an open set in Rn , �

2. f−1(W ) ⊂ Vi (which is Theorem 4.3 in the Supp. Notes), 

3.	 f(Vi) ⊆ W (for, if not, we can replace Vi with Vi ∩ f−1(W )). 

Let U and the sets Ui, i = 1, . . . , N , be open sets in Rn . Let φ : U W and the → 
maps φi : Ui → Vi be diffeomorphisms. We have the following diagram: 

f −−−→
 W
�⏐⏐
 (6.122)

�⏐⏐ 

Vi 

φi,∼= φ,∼= 

gi 
U, Ui −−−→ 
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which define the maps gi, 
gi = φ−1 ◦ f ◦ φi. (6.123) 

By the chain rule, x ∈ Cgi 
= ⇒ φi(x) ∈ Cf , so 

φi(Cgi 
= Cf ∩ Vi. (6.124) 

So, 
φ(gi(Cgi

)) = f(Cf ∩ Vi). (6.125) 

Then, 

 
f(Cf ) ∩ W = φ(gi(Cgi

)). (6.126) 
i 

Sard’s Theorem tells us that gi(Cgi
) is a set of measure zero in U , so 

 
gi(Cgi

) is non­empty, so (6.127) U − 

W − f(Cf ) is also non­empty. (6.128) 

In fact, this set is not only non­empty, but is a very, very “full” set. 

Let f0, f1 : X → Y be proper C∞ maps. Suppose there exists a proper C∞ map 
F : X × [0, 1] → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x). Then 

deg(f0) = deg(f1). (6.129) 

In other words, the degree is a homotopy. The proof of this is essential the same as 
before. 

6.9 Hopf Theorem 

The Hopf Theorem is a nice application of the homotopy invariance of the degree. 
Define the n­sphere


{v ∈ Rn+1
Sn = 1}. (6.130) : ||v|| = 

Hopf Theorem. Let n be even. Let f : Sn → Rn+1 be a C∞ map. Then, for some 
v ∈ Sn , 

f(v) = λv, (6.131) 

for some scalar λ ∈ R. 

Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v). 
Consider w − �v, w�v ≡ w − w1. It follows that w − w1 = 0. 

Define a new map f̃ : Sn Sn by → 

f̃(v) = 
f(v)− �v, f(x)� 

(6.132) 
||f(v)− �v, f(x)�|| 
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Note that (w − w1) ⊥ v, so f̃(v) ⊥ v. 
Define a family of functions 

ft : S
n Sn , (6.133) → 

ft(v) = (cos t)v + (sin t)w̃, (6.134) 

˜ w ⊥ v.where w = f̃(v) has the properties || ̃ 1 and ˜w|| = 
We compute the degree of ft. When t = 0, ft = id, so 

deg(ft) = deg(f0) = 1. (6.135) 

When t = π, ft(v) = −v. But, if n is even, a map from Sn → Sn mapping v → (−v) 
has degree −1. We have arrived at a contradiction. 
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6.10 Integration on Smooth Domains 

Let X be an oriented n­dimensional manifold, and let ω ∈ Ωc
n(X). We defined the 

integral � 
ω, (6.136) 

X 

but we can generalize the integral � 
ω, (6.137) 

D 

for some subsets D ⊆ X. We generalize, but only to very simple subsets called smooth 
domains (essentially manifolds­with­b oundary). The prototypical smooth domain is 
the half plane: 

Hn = {(x1, . . . , xn) ∈ Rn : x1 ≤ 0}. (6.138) 

Note that the boundary of the half plane is 

Bd (Hn) = {(x1, . . . , xn) ∈ Rn : x1 = 0}. (6.139) 

Definition 6.43. A closed subset D ⊆ X is a smooth domain if for every point 
p ∈ Bd (D), there exists a parameterization φ : U → V of X at p such that φ(U ∩
Hn) = V ∩ D. 

Definition 6.44. The map φ is a parameterization of D at p. 

Note that φ : U ∩ Hn → V ∩ D is a homeomorphism, so it maps boundary points 
to boundary points. So, it maps U b = U ∩ Bd (Hn) onto V b = V ∩ Bd (D). 

Let ψ = φ|U b . Then ψ : U b V b is a diffeomorphism. The set U b is an open set →
in Rn−1, and ψ is a parameterization of the Bd (D) at p. We conclude that 

Bd (D) is an (n− 1)­dimensional manifold. (6.140) 

Here are some examples of how smooth domains appear in nature: 
Let f : X → R be a C∞ map, and assume that f−1(0) ∩ Cf = φ (the empty set). 

That is, for all p ∈ f−1(0), dfp = 0. 

Claim. The set D = {x ∈ X : f(x) ≤ 0} is a smooth domain. 

Proof. Take p ∈ Bd (D), so p = f−1(0). Let φ : U → V be a parameterization of X 
at p. Consider the map g = f φ : U → R. Let q ∈ U and p = φ(q). Then ◦ 

(dgq) = dfp ◦ (dφ)q. (6.141) 

We conclude that dgq = 0. 
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By the canonical submersion theorem, there exists a diffeomorphism ψ such that 
ψ = π, where π is the canonical submersion mapping (x, . . . , xn) → x1. We can g ◦

write simply g ◦ ψ = x1. Replacing φ = φold by φ = φnew = φold ◦ ψ, we get the 
new map φ : U → V which is a parameterization of X at p with the property that 
f ◦ φ(x1, . . . , xn) = x1. Thus, φ maps Hn ∩ U onto D ∩ V . 

We give an example of using the above claim to construct a smooth domain. Let 
X = Rn, and define 

2 2f(x) = 1 − (x1 + + xn). (6.142) · · · 
By definition, 

f(x) ≤ 0 (6.143) ⇐⇒ x ∈ Bn , 

where Bn = {x ∈ Rn : ||x|| ≤ 1} is the “unit ball.” So, the unit ball Bn is a smooth 
domain. 

We now define orientations of smooth domains. Assume that X is oriented, and 
let D be a smooth domain. Let φ : U → V be a parameterization of D at p. 

Definition 6.45. The map φ is an oriented parameterization of D if it is an oriented 
parameterization of X. 

Assume that dim X = n > 1. We show that you can always find an oriented 
parameterization. 

Let φ : U → V be a parameterization of D at p. Suppose that φ is not oriented. 
That is, as a diffeomorphism φ is orientation reversing. Let A : Rn Rn be the map → 

A(x1, . . . , xn) = (x1, . . . , xn−1,−xn). (6.144) 

Then A maps Hn → Hn, and φ ◦ A is orientation preserving. So, φ A is an oriented ◦
parameterization of D at p. 

Now, let φ : U → V be an oriented parameterization of D at p. We define 

U b = U ∩ Bd (Hn), (6.145) 

V b = V ∩ Bd (D), (6.146) 

ψ = φ|U b , (6.147) 

where ψ is a parameterization of Bd (D) at p. 
We oriented Bd (D) at p by requiring ψ to be an oriented parameterization. We 

need to check the following claim. 

Claim. The definition of oriented does not depend on the choice of parameterization. 

Proof. Let φi : Ui → Vi, i = 1, 2, be oriented parameterizations of D at p. Define 

U1,2 = φ−1(V1 ∩ V2), (6.148) 1 

U2,1 = φ−1(V1 ∩ V2), (6.149) 2 
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from which we obtain the following diagram:


V1 ∩ V2 

φ1 

�⏐⏐ 

U1,2 

V1 ∩ V2 

φ2 

g−−−→ 

�⏐⏐ (6.150) 

U2,1, 

which defines a map g. By the properties of the other maps φ1, φ2, the map g is an 
orientation preserving diffeomorphism of U1,2 onto U2,1. Moreover, g maps 

U b 
1,2 = Bd (Hn) ∩ U1,2 (6.151) 

onto 
U b 

2,1 = Bd (Hn) ∩ U2,1. (6.152) 

Let h = g U1
b
,2, so h : U1

b
,2 → U2

b
,1. We want to show that h is orientation preserving. |

To show this, we write g and h in terms of coordinates. 

g = (g1, . . . , gn), where gi = gi(x1, . . . , xn). (6.153) 

So, 

⇐⇒ 

⎧ ⎪⎨ ⎪⎩


g1(x1, . . . , xn) < 0 if x1 < 0, 

g1(x1, . . . , xn) > 0 if x1 > 0, (6.154) g maps Hn to Hn 

g1(0, x2, . . . , xn) = 0 

These conditions imply that 

∂ 
∂x1 
g1(0, x2, . . . , xn) ≥ 0, 

(6.155) ∂ g1(0, x2, . . . , xn) = 0, for i = 1.
∂xi 

The map h in coordinates is then 

h = h(x2, . . . , xn) 
(6.156) 

= (g(0, x2, . . . , xn), . . . , gn−1(0, x2, . . . , xn)) , 

which is the statement that h = g| Bd (Hn). 
At the point (0, x2, . . . , xn) ∈ U1

b
,2, ⎤⎡ 

Dg
=

⎢⎢⎢⎣


∂g1 0 0
∂x1 

· · · 
∗ 
. . . Dh 
∗ 

⎥⎥⎥⎦

.
 (6.157) 

The matrix Dg is an n× n block matrix containing the (n− 1) × (n− 1) matrix Dh,

because 

∂hi 
∂xj 

= 
∂gi 
∂xj 

(0, x2, . . . , xn), i, j > 1. (6.158) 
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Note that 
∂g1

det(Dg) = det(Dh). (6.159) 
∂x1 

We know that the l.h.s > 0 and that ∂g1 > 0, so det(Dh) > 0. Thus, the map 
∂x1 

h : U1
b
,2 → U2

b
,1 is orientation preserving. 

To repeat, we showed that in the following diagram, the map h is orientation 
preserving: 

V1 ∩ V2 ∩ Bd (D) 

ψ1 

�⏐⏐ 

V1 ∩ V2 ∩ Bd (D) 

ψ2 

�⏐⏐ (6.160) 

U b h 
1,2 −−−→ U2

b
,1. 

We conclude that ψ1 is orientation preserving if and only if ψ2 is orientation preserv­
ing. 
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Lecture 38

We begin with a review from last time. 
Let X be an oriented manifold, and let D ⊆ X be a smooth domain. Then 

Bd (D) = Y is an oriented (n − 1)­dimensional manifold. 
We defined integration over D as follows. For ω ∈ Ωn

c (X) we want to make sense 
of the integral 

ω. (6.161) 
D 

We look at some special cases: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p, where V ⊆ Int D. For ω ∈ Ωc
n(X), we define 

ω = ω = φ∗ω = φ∗ω. (6.162) 
D V U Rn 

This is just our old definition for 

ω. (6.163) 
V 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization of D 
at p. That is, φ maps U ∩ Hn onto V ∩ D. For ω ∈ Ωn

c (V ), we define 

ω = φ∗ω. (6.164) 
D Hn 

We showed last time that this definition does not depend on the choice of parameter­
ization. 

General case: For each p ∈ Int D, let φ : Up → Vp be an oriented parameterization 
of X at p with Vp ⊆ Int D. For each p ∈ Bd (D), let φ : U Vp be and oriented p →
parameterization of D at p. Let 

U = Up, (6.165) 
p∈D 

where the set U = {Up : p ∈ D} be an an open cover of U . Let ρi, i = 1, 2, . . . , be a 
partition of unity subordinate to this cover. 

Definition 6.46. For ω ∈ Ωn
c (X) we define the integral 

ω = ρiω. (6.166) 
D i D 

Claim. The r.h.s. of this definition is well­defined. 
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Proof. Since the ρi’s are a partition of unity, there exists an N such that 

supp ω ∩ supp ρi = φ, (6.167) 

for all i > N . 
Hence, there are only a finite number of non­zero terms in the summand. More­

over, each summand is an integral of one of the two types above (cases 1 and 2), and 
is therefore well­defined. 

Claim. The l.h.s. of the definition does not depend on the choice of the partition of 
unity ρi. 

Proof. We proved an analogous assertion about the definition of 
X 
ω a few lectures 

ago, and the proof of the present claim is exactly the same. 

6.11 Stokes’ Theorem 

Stokes’ Theorem. For all ω ∈ Ωn−1(X),c 

dω = ω. (6.168) 
D Bd (D) 

Proof. Let ρi, i = 1, 2 . . . , be a partition of unity as defined above. Replacing ω with 
ρiω, it suffices to prove this for the two special cases below: 
Case 1: Let p ∈ Int D, and let φ : U → V be an oriented parameterization of X 

at p with V ⊆ Int D. If ω ∈ Ωn−1(V ), then c 

dω = φ∗dω = dφ∗ω = 0. (6.169) 
D Rn Rn 

Case 2: Let p ∈ Bd (D), and let φ : U → V be an oriented parameterization 
of D at p. Let U b = U ∩ Bd (Hn), and let V b = V ∩ Bd (D). Define ψ : φ U b, so |
ψ : U b → V b is an oriented parameterization of Bd (D) at p. If ω ∈ Ωn−1(V ), then c 

φ∗ω = fi(x1, . . . , xn)dx1 ∧ · · · ∧ � n. (6.170) dxi ∧ · · · ∧ dx

What is ψ∗ω? Let ι : Rn−1 → Rn be the inclusion map mapping Bd (Hn) → Rn . 
The inclusion map ι maps (x2, . . . , xn) → (0, x2, . . . , xn). Then φ ι = ψ, so ◦

ψ∗ω = ι∗φ∗ω 
n

= ι∗ 
� 

fidx1 ∧ · · · ∧ � n . 
(6.171) 

dxi ∧ · · · ∧ dx
i=1 

But, 
ι∗dx1 = dι∗x1 = 0, since ι∗x1 = 0. (6.172) 
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So, 

ψ∗ω = ι∗f1dx2 ∧ · · · ∧ dxn 
(6.173) 

= f1(0, x2, . . . , xn)dx2 ∧ · · · ∧ dxn. 
Thus, � � � 

ω = ψ∗ω = f1(0, x2, . . . , xn)dx2 . . . dxn. (6.174) 
Bd (D) Rn−1 Rn−1 

On the other hand, � � � 
dω = φ∗dω = dφ∗ω. (6.175) 

D Hn Hn 

One should check that �� � 
dφ∗ω = d fidx1 ∧ · · · ∧ � nxxi ∧ · · · ∧ dx

= 

�� 
(−1)i−1 ∂fi 

� 

n. 
(6.176) 

∂xi 
dx1 ∧ · · · ∧ dx

So, each summand 
∂fi 

dx1 . . . dxn (6.177) 
∂xi 

can be integrated by parts, integrating first w.r.t. the ith variable. For i > 1, this is 
the integral 

∞ ∂fi xi=∞ 

∂xi 
dxi = fi(x1, . . . , xn)|xi=−∞ 

(6.178) −∞ 

= 0. 

For i = 1, this is the integral 
∞ ∂f1 

(x1, . . . , xn)dx1 = f1(0, x2, . . . , xn). (6.179) 
∂x1−∞ 

Thus, the total integral of φ∗dω over Hn is 

f1(0, x2, . . . , xn)dx2 . . . dxn. (6.180) 

We conclude that � � 
dω = ω. (6.181) 

D Bd (D) 

We look at some applications of Stokes’ Theorem. 
Let D be a smooth domain. Assume that D is compact and oriented, and let 

Y = Bd (D). Let Z be an oriented n­manifold, and let f : Y → Z be a C∞ map. 

Theorem 6.47. If f extends to a C∞ map F : D Z, then → 

deg(f) = 0. (6.182) 

Corollary 9. The Brouwer fixed point theorem follows from the above theorem. 
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