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Lecture 1

1 Review of Topology

1.1 Metric Spaces

Definition 1.1. Let X be a set. Define the Cartesian product X x X = {(z,y) :
zr,y € X}

Definition 1.2. Let d : X x X — R be a mapping. The mapping d is a metric on
X if the following four conditions hold for all x,y, z € X:

(i) d(z,y) = d(y,z),
(i) d
(iif) d
(iv) d

Given a metric d on X, the pair (X, d) is called a metric space.

| \/

z,y) =0 <= z =y, and

d(z,y) =
(z,y)
(z,y)
(x,2) < d(z,y) + d(y, 2).

Suppose d is a metric on X and that Y C X. Then there is an automatic metric
dy on Y defined by restricting d to the subspace ¥ x Y,

dy =d|Y xY. (1.1)
Together with Y, the metric dy defines the automatic metric space (Y, dy).

1.2 Open and Closed Sets

In this section we review some basic definitions and propositions in topology. We
review open sets, closed sets, norms, continuity, and closure. Throughout this section,
we let (X, d) be a metric space unless otherwise specified.

One of the basic notions of topology is that of the open set. To define an open
set, we first define the e-neighborhood.

Definition 1.3. Given a point z, € X, and a real number € > 0, we define
U(xg,€) ={z € X :d(z,x,) < €}. (1.2)
We call U(x,, €) the e-neighborhood of x, in X.
Given a subset Y C X, the e-neighborhood of x, in Y is just U(z,,e) NY.

Definition 1.4. A subset U of X is open if for every x, € U there exists a real
number € > 0 such that U(xz,,€) C U.



We make some propositions about the union and intersections of open sets. We
omit the proofs, which are fairly straightforward.
The following Proposition states that arbitrary unions of open sets are open.

Proposition 1.5. Let {U,,«a € I} be a collection of open sets in X, where I is just
a labeling set that can be finite or infinite. Then, the set

U U, is open.

a€el

The following Corollary is an application of the above Proposition.

Corollary 1. If Y C X and A is open in'Y (w.r.t. dy), then there exists on open
set U in X such that UNY = A.

Proof. The set A is open in Y. So, for any p € A there exists an ¢, > 0 such that
U(p,e,) NY C A. We construct a set U containing A by taking the union of the sets
U(p,€,) over all p in A,

U= U (1.3)

peEA

For every p € A, we have U(p, €,)NY C A, which shows that UNY C A. Furthermore,
the union is over all p € A, so A C U, which implies that A C U NY. This shows
that UNY = A. To conclude the proof, we see that U is open by the openness of the
U(p,¢€,) and the above theorem. ]

The following Proposition states that finite intersections of open sets are open.

Proposition 1.6. Let {U;;i = 1,...,N} be a finite collection of open sets in X.

Then the set
i=N

ﬂ U; is open.
i=1

Definition 1.7. Define the complement of A in X tobe A°=X —A={zr e X :
x ¢ A}

We use the complement to define closed sets.

Definition 1.8. The set A is closed in X if A°is open in X.

1.3 Metrics on R"

For most of this course, we will only consider the case X = R" or X equals certain
subsets of R™ called manifolds, which we will define later.

There are two interesting metrics on R™. They are the Fuclidean metric and
the sup metric, and are defined in terms of the Fuclidean norm and the sup norm,
respectively.



Definition 1.9. Let z € R, written out in component form as z = (x1, o, ..., Z,).
The Fuclidean norm of x is

o] = /2 + - + 22,
and the the sup norm of x is
|z| = max |z|.
(A
From these norms we obtain the Euclidean distance function

|z —yll (1.4)

and the sup distance function
|z —yl, (1.5)
respectively.
These two distance functions are related in several ways. In particular,

z =yl < llz =yl < Vnlz —yl.

These distance functions are also related by the following Proposition, which will
sometimes come in handy.

Proposition 1.10. A subset U of R™ is open w.r.t. the || || distance function if and
only if it is open w.r.t. the | | distance function.

So, these two distance functions give the same topologies of R".

1.4 Continuity

Consider two metric spaces (X,dx) and (Y,dy), a function f : X — Y, and a point
r, € X.

Definition 1.11. The function f is continuous at z, if for every € > 0 there exists a
0 > 0 such that
dx(z,20) <6 = dy(f(), [(z,)) <e. (1.6)

By definition, a function is continuous if it is continuous at all points in its domain.

Definition 1.12. The function f is continuous if f is continuous at every point
r, € X.

There is an alternative formulation of continuity that we present here as a theorem.

Theorem 1.13. The function [ is continuous if and only if for every open subset U
of Y, the pre-image f~1(U) is open in X.

Continuous functions can often be combined to construct other continuous func-
tions. For example, if f,g: X — R are continuous functions, then f + g and fg are
continuous functions.



1.5 Limit Points and Closure

As usual, let (X, d) be a metric space.

Definition 1.14. Suppose that A C X. The point x, € X is a limit point of A if for
every e-neighborhood U (z,, €) of z,, the set U(z,,€) is an infinite set.

Definition 1.15. The closure of A, denoted by A, is the union of A and the set of
limit points of A,

A=AuU{x, € X : z,is a limit point of A}. (1.7)

Now we define the interior, exterior, and the boundary of a set in terms of open
sets. In the following, we denote the complement of A by A°= X — A.

Definition 1.16. The set
Int A= (AC)C (1.8)

is called the interior of A.
It follows that

x €Int A <= de > 0 such that U(z,¢€) C A. (1.9)

Note that the interior of A is open.
We define the exterior of a set in terms of the interior of the set.

Definition 1.17. The exterior of A is defined to be Ext A = Int A°.
The boundary of a set is the collection of all points not in the interior or exterior.
Definition 1.18. The boundary of A is defined to be Bd A = X —((Ext A)U(Int A)).

Always, we have X =Int AUExt AUBd A.



Lecture 2

1.6 Compactness

As usual, throughout this section we let (X,d) be a metric space. We also remind
you from last lecture we defined the open set

U(zo,N) ={x € X 1 d(x,z,) < A} (1.10)
Remark. If U(z,,\) C U(x1, A1), then Ay > d(x,, x1).
Remark. If Az Q U(l’a, >\z) for ¢ = ]_, 2, then Al U Ag g U(l‘o, )\1 + )\2)

Before we define compactness, we first define the notions of boundedness and
covering.

Definition 1.19. A subset A of X is bounded if A C U(z,, A) for some \.

Definition 1.20. Let A C X. A collection of subsets {U, C X, « € I} is a cover of
Aif
Ac|JU..

Now we turn to the notion of compactness. First, we only consider compact sets
as subsets of R".
For any subset A C R",

A is compact <= A is closed and bounded.

The above statement holds true for R™ but not for general metric spaces. To
motivate the definition of compactness for the general case, we give the Heine-Borel
Theorem.

Heine-Borel (H-B) Theorem. Let A C R"™ be compact and let {U,, € I} be a
cover of A by open sets. Then a finite number of U, ’s already cover A.

The property that a finite number of the U,’s cover A is called the Heine-Borel
(H-B) property. So, the H-B Theorem can be restated as follows: If A is compact in
R", then A has the H-B property.

Sketch of Proof. First, we check the H-B Theorem for some simple compact subsets
of R™. Consider rectangles @ = I x --+ x I, C R™, where I}, = [ay, by] for each k.
Starting with one dimension, it can by shown by induction that these rectangles have
the H-B property.

Too prove the H-B theorem for general compact subsets, consider any closed and
bounded (and therefore compact) subset A of R™. Since A is bounded, there exists a
rectangle () such that A C ). Suppose that the collection of subsets {U,,« € I} is

7



an open cover of A. Then, define U, = R" — A and include U, in the open cover. The
rectangle () has the H-B property and is covered by this new cover, so there exists
a finite subcover covering (). Furthermore, the rectangle () contains A, so the finite
subcover also covers A, proving the H-B Theorem for general compact subsets.

[
The following theorem further motivates the general definition for compactness.
Theorem 1.21. If A CR" has the H-B property, then A is compact.

Sketch of Proof. We need to show that the H-B property implies A is bounded (which
we leave as an exercise) and closed (which we prove here).

To show that A is closed, it is sufficient to show that A€ is open. Take any x, € A€,
and define

Cy={z€eR":d(z,z,) <1/N}, (1.11)
and
Uy = C5,. (1.12)
Then,
(Cn = {z.} (1.13)
and

Uy =R" - {z.}. (1.14)

The Uy’s cover A, so the H-B Theorem implies that there is a finite subcover
{Uny,....,Un,} of A. We can take N; < Ny < --- < Ni, so that A C Uy,. By
taking the complement, it follows that Cy, C A°. But U(x,,1/Ng) C Ch,, so z,
is contained in an open subset of A°. The above holds for any z, € A° so A€ is
open. ]

Let us consider the above theorem for arbitrary metric space (X,d) and A C X.
Theorem 1.22. If A C X has the H-B property, then A is closed and bounded.
Sketch of Proof. The proof is basically the same as for the previous theorem. O]

Unfortunately, the converse is not always true. Finally, we come to our general
definition of compactness.

Definition 1.23. A subset A C X is compact if it has the H-B property.

Compact sets have many useful properties, some of which we list here in the
theorems that follow.

Theorem 1.24. Let (X,dx) and (Y,dy) be metric spaces, and let f : X —Y be a
continuous map. If A is a compact subset of X, then f(A) is a compact subset of Y.



Proof. Let {U,,a € I} be an open covering of f(A). Each pre-image f~1(U,) is
open in X, so {f~1(U,) : @ € I} is an open covering of A. The H-B Theorem says
that there is a finite subcover {f~1(U,,) : 1 <i < N}. It follows that the collection

i

{U,, : 1 <i < N} covers f(A), so f(A) is compact. O
A special case of the above theorem proves the following theorem.

Theorem 1.25. Let A be a compact subset of X and f : X — R be a continuous
map. Then f has a mazimum point on A.

Proof. By the above theorem, f(A) is compact, which implies that f(a) is closed and
and bounded. Let a = Lu.b. of f(a). The point a is in f(A) because f(A) is closed,
so there exists an x, € A such that f(z,) = a. O

Another useful property of compact sets involves the notion of uniform continuity.

Definition 1.26. Let f : X — R be a continuous function, and let A be a subset of
X. The map f is uniformly continuous on A if for every e > 0, there exists § > 0
such that

d(z,y) <6 = [f(z) = fly)l <e
for all x,y € A.

Theorem 1.27. If f : X — Y is continuous and A is a compact subset of X, then
f is uniformly continuous on A.

Proof. Let p € A. There exists a d, > 0 such that |f(x) — f(p)| < €/2 for all
x € U(p,d,). Now, consider the collection of sets {U(p,d,/2) : p € A}, which is an
open cover of A. The H-B Theorem says that there is a finite subcover {U (p;, d,,/2) :
1 <i < N}. Choose § < mind,, /2. The following claim finishes the proof.

Claim. Ifd(xz,y) <6, then |f(z) — f(y)| <e.

Proof. Given z, choose p; such that z € U(p;, d,,/2). So, d(p;, x) < 6p,/2 and d(x,y) <
d < d,,/2. By the triangle inequality we conclude that d(p;,y) < dp,. This shows that

z,y € U(pi,0,,), which implies that |f(z) — f(p;)] < €¢/2 and |f(y) — f(p:)] < €/2.
Finally, by the triangle inequality, |f(x) — f(y)| < €, which proves our claim.

]

1.7 Connectedness

As usual, let (X, d) be a metric space.

Definition 1.28. The metric space (X, d) is connected if it is impossible to write X
as a disjoint union X = U; U U, of non-empty open sets U; and Us,.



Note that disjoint simply means that U; N Uy = ¢, where ¢ is the empty set.

A few simple examples of connected spaces are R, R", and I = [a, b]. The following
theorem shows that a connected space gets mapped to a connected subspace by a
continuous function.

Theorem 1.29. Given metric spaces (X,dx) and (Y,dy), and a continuous map
f: X =Y, it follows that

X is connected = f(X) is connected.

Proof. Suppose f(X) can be written as a union of open sets f(X) = U; U Us such
that Uy NUy = ¢. Then X = f~1(U;)U f~1(Us) is a disjoint union of open sets. This
contradicts that X is connected. O

The intermediate-value theorem follows as a special case of the above theorem.

Intermediate-value Theorem. Let (X,d) be connected and f : X — R be a con-
tinuous map. If a,b € f(X) and a <r < b, thenr € f(X).

Proof. Suppose r ¢ f(X). Let A = (—oo,r) and B = (r,00). Then X = f~!(A) U
f~YB) is a disjoint union of open sets, a contradiction. O
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Lecture 3

2 Differentiation

2.1 Differentiation in n dimensions

We are setting out to generalize to n dimensions the notion of differentiation in one-
dimensional calculus. We begin with a review of elementary one-dimensional calculus.
Let I C R be an open interval, let f : I — R be a map, and let a € I.

Definition 2.1. The derivative of f at a is

o)ty 0D = (@ o)

t—0 t ’
provided that the limit exists. If the limit exists, then f is differentiable at a.

There are half a dozen or so possible reasonable generalizations of the notion
of derivative to higher dimensions. One candidate generalization which you have
probably already encountered is the directional derivative.

Definition 2.2. Given an open set U in R", amap f: U — R™, a point a € U, and
a point u € R", the directional derivative of f in the direction of u at a is

D (@)t L0t 1) = F(0)

t—0 t ’ (22)

provided that the limit exists.

In particular, we can calculate the directional derivatives in the direction of the
standard basis vectors eq, ..., e, of R", where

er = (1,0,...,0), (2.3)
e; = (0,1,0,...,0), (2.4)

: (2.5)
e, = (0,...,0,1). (2.6)

Notation. The directional derivative in the direction of a standard basis vector e; of

R"™ is denoted by
0

&ci

D;f(a) = De, f(a) = 5—f(a). (2.7)

We now try to answer the following question: What is an adequate definition of
differentiability at a point a for a function f: U — R™?

11



e Guess 1: Require that 2L (a) exists.

However, this requirement is inadequate. Consider the function defined by

0, if li th -axi th -axi
Fonaa) = 42 i (iL‘l,J?g) ies on the x-axis or the wo-axis, (2.8)
1, otherwise.
Then, both
of of
—(0)=0and =—(0) =0 2.9
L) =0and 220 -0, (2.9

but the function f is not differentiable at (0,0) along any other direction.

e Guess 2: Require that all directional derivatives exist at a.

Unfortunately, this requirement is still inadequate. For example (from Munkres
chapter 5), consider the function f: R? — R defined by

Claim. The directional derivative D, f(0) ezists for all u.

Proof. Let u = (h,k). Then

LS = ) f()
t—0 t t—0 t
_y t*hk? 1
o\ e LA )t (2.11)
)0, h=0
| k2/h, h#£0.
So the limit exists for every wu. m

However, the function is a non-zero constant on a parabola passing through the
.. 4 .. .
origin: f(t?,t) = L3 = 1 except at the origin where f(0,0) = 0. The function f

20 2
is discontinuous at the origin despite the existence of all directional derivatives.

e Guess 3. This guess will turn out to be correct.
Remember than in one-dimensional calculus we defined

) — i LD = (0

t—0 t

: (2.12)

for a function f : I — R and a point a € I. Now consider the function
A : R — R defined by

A(t) = f'(a)t. (2.13)

12



Then,

po Flat D) = fl@) =A@ _ . flatt)— fla)
t—0 t t—0 t

=0.
So, A(t) = f(a+t) — f(a) when ¢ is small.
Now we generalize to n dimensions.

Definition 2.3. Given an open subset U of R", amap f: U — R™, and a
point a € U, the function f is differentiable at a if there exists a linear mapping
B : R" — R™ such that for every h € R" — {0},

fla+h) — f(a) — Bh
Al

— 0 as h — 0. (2.15)

That is, f(a+ h) — f(a) & Bh when h is small.

Theorem 2.4. If f is differentiable at a, then for every u the directional derivative
of f in the direction of u at a exists.

Proof. The function f is differentiable at a, so

fla+tu) — fla) = B(tu)

ul —0ast—0. (2.16)
Furthermore,
fla+tu) = fla) = B(tu) _ t fla+tu)— f(a) — B(tu)
|tu) o |tu t
_t 1 (f(a—i—tu) —fla) Bu) (2.17)
2] ul t
— 0,
ast — 0, so
fla+tu) = fla) — Bu ast — 0. (2.18)
t
O

Furthermore, the linear map B is unique, so the following definition is well-defined.

Definition 2.5. The deriwative of f at a is Df(a) = B, where B is the linear map
defined above.

Note that Df(a) : R — R™ is a linear map.

13



Theorem 2.6. If f is differentiable at a, then f is continuous at a.

Sketch of Proof. Note that for h # 0 in R",
fla+h)— f(a) — Bh

7 —0ash—0 (2.19)

implies that
fla+h)— f(a) — Bh— 0 as h — 0. (2.20)
From this you can conclude that f is continuous at a. ]

Remark. Let L : R" — R™ be a linear map and a € R™. The point a can be written
as a sum a = ) aje; = (a,...,a,). The point La can be written as the sum
La =) ajLe;, and L can be written out in components as L = (Ly,..., L,,), where
each L; : R” — R is a linear map. Then Le; = (Ly,¢j,..., Lne;), and Lie; = ¢, ;.

The numbers ¢; ; form an n x n matrix denoted by [¢; ;].

Remark. Let U C R", and let f; : R® — R™ and f; : R” — R™2 be differentiable
maps. Let m = mj + ma, so that R™ x R™2 = R™. Now, construct a function
f:R™ — R™ defined in component form by f = (f1, f2). The derivative of f at a is

Df(a) = (Dfi(a), D fa(a)). (2.21)

Remark. Let f : U — R™ be a map. The action of f on input x written out in
component form is f(z) = (fi(z),..., fm(z)). So, the map can be represented in
component form as f = (f1,..., fm), where each f; as a map of the form f; : U — R.
The derivative of f acting on the standard basis vector e; is

Df(a)e; = (Dfi(a)e;,...,Dfn(a)e;)

fr O fm 2.22
- L. S, 22
So, the derivative (D f)(a) can be represented by an m x n matrix
dfi
(D))= Jsla) = | ) (229

called the Jacobian matrix of f at a, which you probably recognize.

14



Lecture 4

2.2 Conditions for Differentiability

In this lecture we will discuss conditions that guarantee differentiability. First, we
begin with a review of important results from last lecture.

Let U be an open subset of R”, let f: U — R"™ be a map, and let a € U.

We defined f to be differentiable at a if there exists a linear map B : R® — R™
such that for h € R™ — {0},

fla+h)— f(a) — Bh
Al

— 0 as h — 0. (2.24)

If such a B exists, then it is unique and B = D f(a). The matrix representing B is
83:? (a)}, where f = (f1,..., fm)-

0 J
Note that the mere existence of all of the partial derivatives in the Jacobian matrix
does not guarantee differentiability.

Now we discuss conditions that guarantee differentiability.

the Jacobian matrix Jf(a) = [

Theorem 2.7. Suppose that all of the partial derivatives % in the Jacobian matriz
J

exist at all points x € U, and that all of the partial derivatives are continuous at
x =a. Then f is differentiable at a.

Sketch of Proof. This theorem is very elegantly proved in Munkres, so we will simply
give the general ideas behind the proof here.

First, we look at the case n = 2,m = 1. The main ingredient in the proof is the
Mean Value Theorem from 1-D calculus, which we state here without proof.

Mean Value Theorem. Given an interval [a,b] CR and a map ¢ : [a,b] — R, if ¢
is continuous on [a,b] and differentiable on (a,b), then there exists a point ¢ € (a,b)
such that ¢p(b) — ¢(a) = ¢'(c)(b — a).

Now we continue with the proof. Let f be a map f : U — R, where U C R2. So,
f is a function of two variables f = f(z1,22). Consider a point a = (a;,a2) € U and

any point h € R? — {0} “close” to zero, where by close we mean a +h € U. We want
to compute f(a+ h) — f(a).

fla+h)— f(a) = flar + hi,as + hy) — f(ay,az)
= f(CLl + hl, as + hg) — f(al, ay + hg) (225)
+ f(ay,as + ha) — f(a1, as).

Thinking of the first two terms as functions of the first argument only, and thinking
of the last two terms as functions of the second term only, and applying the Mean

15



Value Theorem to each pair of terms, we obtain

flath) = @) = ey, an + ho)y

az(})f (2.26)
+ a—@(abdz)hza
where a1 < ¢; < a1 + by and as < ds < as + hy. This can be rewritten as
of of
h) — hi + h 2.2
fla+h) = Fla) = 5@ + - (@b, (2.27)

where ¢ = (¢1, a3 + he) and d = (ay,ds).
We want to show that (f(a + h) — f(a) — Df(a)h)/|h] — 0 as h — 0, where

Df(a) = [ﬁ(a) ﬁ(a)} . Using our previously derived expression for f(a+h)— f(a),

o1 ) Oxo
we find that
0 0
fla+ 1) = £(@) = D@ = fla+1) = f(@) — g @m — 2L,
of of of of
- (2o~ ZLw)m+ (Lw- L)
(2.28)
We can use the sup norm to show that
0 0 0
latt)=st@-Df @i < | 550 - 3 @ i+ @ - 7L @] nal. 220
from which it follows that
f(a+h)— fa)— Df(@hl _|0f . 0 of . of
g <[t~ |+ |t - Lw]. e

where we used the fact that |h| = max(|hq], |ha])-
Notice that as h — 0, both ¢ — a and d — a, as can be easily seen using the
following diagram. This means that the r.h.s. of Equation (2.30) goes to zero as h

X,

a+h

goes to zero, because the partial derivatives are continuous. It follows that the l.h.s.
goes to zero, which completes our proof.

The proof in n dimensions is similar to the above proof, but the details are harder
to follow. O
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We now introduce a useful class of functions.
Definition 2.8. Given U C R" and f : U — R, we define
of

fec(U) << a—,z’ =1,...,n exist and are continuous at all points z € U.
T
(2.31)
Similarly, we define

2 af 1 .

fEC(U) <~ %EC(U),Z:G,...,H. (232)
k Of _ k-1

fecC(U) < %GC (U),i=a,...,n. (2.33)
fec®U) < feCHU)VE. (2.34)

If f is multiply differentiable, then you can perform higher order mixed partial
derivatives.

One of the fundamental theorems of calculus is that the order of the partial deriva-
tives can be taken in any order. For example,

o (0 o (o\ _ 0f
du; (a_xj) ~ Oz (ax) = O;0x; (2:35)

Let’s do the proof for this case. Let U C R? and f = f(z1, z2). We prove the following

claim:
0 0 0 0
) == . 2.

Proof. Take a € U written in components as a = (ay, az), and take h = (hy, hy) €
R? — {0} such that a + h € U. That is, take h ~ 0.
Define

Claim.

A(h) = f(ar + hi, a2+ ho) — f(ar,as + ho) — f(a1 + ha,a2) + f(ar,a2),  (2.37)

and define
o(s) = flar + b1, s) — f(as,s), (2.38)
where ay < s < ag + hy. We find that

A(h) = ¢(az + ha) — d(az)

2.39
= ¢/<C2)h27 ay < ¢z < ag + ho, ( )

17



by the Mean Value Theorem. Writing out ¢’ using partial derivatives of f, and using

the Mean Value Theorem again, we find

0 0
A(h) = (_a;.[fz (CLl + hl, CQ) — 8_1i<a17 CQ)) h2
0 0
= (87 (6710(01702)}“)) ho,a1 < ¢y < ap+hy
1 2

(& (L
(& () onn

where we obtained the last line by symmetry. This shows that

o (a5:) © =3 (37,) @

Ash —0,¢c— aand d — a, so

o (60:) = 5z (5 @

for any a € U.

The above argument can be iterated for f € C3(U), f € C3(4), etc.

18
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Lecture 5

2.3 Chain Rule

Let U and v be open sets in R”. Consider maps f : U — V and g : V — R*.
Choose a € U, and let b = f(a). The composition go f : U — R is defined by

(g0 f)(x) = g(f(x)).

Theorem 2.9. If f is differentiable at a and g is differentiable at b, then go f is
differentiable at a, and the derivative is

(Dg o f)(a) = (Dg)(b) o Df(a). (2.43)

Proof. This proof follows the proof in Munkres by breaking the proof into steps.

e Step 1: Let h € R" — {0} and h=0, by which we mean that h is very close to
zero. Consider A(h) = f(a+ h) — f(a), which is continuous, and define

fla-+h) = f(a) = Df(@h

F(h) = 2.44
(n : (2.44)
Then f is differentiable at a if and only if F'(h) — 0 as h — 0.
F(h) = Ah) Th?f(a)h, (2.45)
S0
A(h) = Df(a)h + |h|F(h). (2.46)
Lemma 2.10. Alh
|§L|) is bounded. (2.47)
Proof. Define
IDf(@)] = sup | 5(a) (2.48)
a) = sup B a)l, .
and note that
of
% (4) = Df(a)e. (2.49)

where the e; are the standard basis vectors of R™. If h = (hy,...,h,), then
h => hie;. So, we can write

Df(a)h = hDf(a)e; =Y hlg—;(a). (2.50)

19



It follows that

“”@MSZWQ£W> (2.51)
< mlh|[Df(a)l.
By Equation 2.46,
|A(R)| < m|h[|Df(a)| + |h|F(h), (2.52)
|ﬁ$”§nﬂﬁ@ﬂ+FW) (2.53)
0

Step 2: Remember that b = f(a), g : V — R¥ and b € V. Let k=0. This
means that & € R” — {0} and that k is close to zero. Define

g+ k) —g(b) — (Dg)(b)k

G(k) = % , (2.54)
so that
g(b+ k) —g(b) = Dg(b)k + |k|G(k). (2.55)
We proceed to show that g o f is differentiable at a.
go flath) = go f(@) = g(f(a+h)  g(F(@) 256

=g(b+ A(h)) —g(b),
where f(a) = b and f(a+ h) = f(a) + A(h) = b+ A(h). Using Equation 2.55
we see that the above expression equals
Dg(b)A(h) + |A(R)|G(A(R)). (2.57)
Substituting in from Equation 2.46, we obtain
goflat+h)—gofla)=...
= Dg(b)(Df(a)h + |h|F(h))+ ...
= Dg(b) o D f(a)h +[h|Dg(b)F(h) + |A(R)|G(A(h))
(2.58)
This shows that

goflat+h)—go fla)— Dg(b) o Df(a)h
||

— pgm) Pt + 2 Gramy).

|
(2.59)
We see in the above equation that g o f is differentiable at a if and only if the
Lh.s. goes to zero as h — 0. It suffices to show that the r.h.s. goes to zero
as h — 0, which it does: F'(h) — 0 as h — 0 because f is differentiable at a;
G(A(h)) — 0 because g is differentiable at b; and A(h)/|h| is bounded.
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]

We consider the same maps g and f as above, and we write out f in component
form as f = (f1,..., fn) where each f; : U — R. We say that f is a C" map if each
fi € C"(U). We associate D f(z) with the matrix

Afi
a.’L’j

Df(x) ~ { (x)} . (2.60)

By definition, f is C" (that is to say f € C"(U)) if and only if Df is C"L.

Theorem 2.11. If f: U -V CR" is a C" map and g : V — RP is a C" map, then
gof:U—RPisalC" map.

Proof. We only prove the case r = 1 and leave the general case, which is inductive,
to the student.

e Caser =1:

dgi
Dy f(o) = Dalf(e) o Df ) ~ | 5 1(0)] (261
j
The map ¢ is C*, which implies that dg;/dz; is continuous. Also,
O
Df(z) ~ L%J} (2.62)

is continuous. It follows that Dg o f(z) is continuous. Hence, g o f is C'.

2.4 The Mean-value Theorem in n Dimensions

Theorem 2.12. Let U be an open subset of R™ and f : U — R a C! map. Fora € U,
h € R", and h=0,
fla+h)—=fla)=Df(c)h, (2.63)

where ¢ is a point on the line segment a +th,0 <t < 1, joining a to a+ h.

Proof. Define a map ¢ : [0,1] — R by ¢(t) = f(a + th). The Mean Value Theorem
implies that ¢(1) — ¢(0) = ¢'(c) = (Df)(c)h, where 0 < ¢ < 1. In the last step we
used the chain rule. O]
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2.5 Inverse Function Theorem

Let U and V be open sets in R”, and let f : U — V be a C! map. Suppose there
exists a map g : V — U that is the inverse map of f (which is also C!). That is,
g(f(z)) = x, or equivalently g o f equals the identity map.

Using the chain rule, if a € U and b = f(a), then

(Dg)(b) = the inverse of Df(a). (2.64)
That is, Dg(b) o D f(a) equals the identity map. So,
Dg(b) = (D f(a))™ (2.65)

However, this is not a trivial matter, since we do not know if the inverse exists. That
is what the inverse function theorem is for: if D f(a) is invertible, then ¢ exists for
some neighborhood of @ in U and some neighborhood of f(a) in V. We state this
more precisely in the following lecture.
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Lecture 6

We begin with a review of some earlier definitions.
Let 06 > 0 and a € R™.

Euclidean ball: Bs(a) = {z e R":|| x —a ||< §} (2.66)

Supremum ball: Rs(a) = {x € R" : |z — a| <}

2.67
:[1><"'><[n7 [J:(a]—&aj—i—(s) ( )

Note that the supremum ball is actually a rectangle. Clearly, Bs(a) C Rs(a). We use
the notation Bs = Bs(0) and Rs = Rs(0).

Continuing with our review, given U open in R”, a map f : U — R¥, and a point
a € U, we defined the derivate D f(a) : R® — R¥ which we associated with the matrix

Df(a) ~ {gjﬂ (a)} , (2.68)
and we define o
D f(a)] = Sup 893; (a) (2.69)
Lastly, we define U C R" to be convex if
a,belU = (1—t)a+theUforall0<t<1. (2.70)

Before we state and prove the Inverse Function Theorem, we give the following
definition.

Definition 2.13. Let U and V be open sets in R” and f : U — V a C" map. The
map f is is a C" diffeomorphism if it is bijective and f~!:V — U is also C".

Inverse Function Theorem. Let U be an open set in R™, f : U — R™ a C" map,
and a € U. If Df(a) : R™ — R™ is bijective, then there exists a neighborhood Uy of a
in U and a neighborhood V' of f(a) in R™ such that F|U; is a C" diffeomorphism of
U1 at V.

Proof. To prove this we need some elementary multi-variable calculus results, which
we provide with the following lemmas.

Lemma 2.14. Let U be open in R™ and F : U — R* be a C' mapping. Also assume
that U is convez. Suppose that |Df(a)| < ¢ for all A€ U. Then, for all x,y € U,

|[f(2) = f(y)] < nefe —yl. (2.71)
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Proof. Consider any x,y € U. The Mean Value Theorem says that for every ¢ there
exists a point ¢ on the line joining x to y such that

) = 0 =3 e~ 1) (2.72)

It follows that

af;
i) — fily)] < Z] fi(4
<Y cla; -yl (2.73)

< nelz —y|

|x1 |

This is true for each i, so |f(z) — f(y)| < nc|z — y| O

Lemma 2.15. Let U be open in R™ and f : U — R a C* map. Suppose f takes a
manimum value at some point b € U. Then

0

85() 0,:=1,...,n. (2.74)
Proof. We reduce to the one-variable result. Let b = (by,...,b,) and let ¢(t) =
f(by,...,bi_1,t,biy1,...,b,), which is C* near b; and has a minimum at b;. We know
from one-variable calculus that this implies that g—‘f(bi) = 0. O

In our proof of the Inverse Function Theorem, we want to show that f is locally
a diffeomorphism at a. We will make the following simplifying assumptions:

a=0, f(a)=0, Df(0)=1 (identity). (2.75)

Then, we define a map g : U — R™ by g(z) = = — f(x), so that we obtain the further
simplification
Dg(0) = Df(0) —I =0. (2.76)

Lemma 2.16. Given € > 0, there exists § > 0 such that for any x,y € Rs,
9(z = g(y)| < elz —yl. (2.77)

Proof. The result that Dg(0) = 0 implies that there exists § > 0 such that for any
x € Rs, |Dg(x)| < €/n. Applying the first lemma, the proof is complete. O

Now, remember that g(z) = x — f(x). Take any =,y € Rs. Then

r—y=ux— f(z)+ fz) = fly) + fly) —
=g(x) —gy) + f(z) — f(y).
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Using the Triangle Inequality we obtain

[z —yl < lg(x) —gW)| + [f (=) = f(y)| (2.79)

Using the previous lemma, we find that
1=z —yl <[f(x) = fy)l. (2.80)

We choose & such that € > 1/2, so that
|z —y| <2[f(z) = fy)l. (2.81)

This proves that f: Rs — R™ is one-to-one.
We also want to prove that f is onto. We have Df(0) = I, so det(%(O)) = 1.
We can choose ¢ such that for any = € Ry,

det <§fi (x)) 51 (2.82)

ij 5

Lemma 2.17. If y € Bs/4, than there exists a point c € Rs such that f(c) =y.

Proof. Let h: Rs — R be a map defined by h(x) =| f(z) —y [|>. The domain Ry is
compact, so h has a minimum at some point ¢ € Rjy.

Claim. The point c is an interior point. That s, ¢ € Ry.

Proof. For any = € Rs, |x| = § implies that |f(x) — f(0)] = |f(x)] > §/2

— || f(z) [[=

N

J
= || f(z) -y ||> 7 when z € Bd Ry. (2.83)

(5 2
— h(z) > (—) :
4
At the origin, h(0) = f(0) —y [*=| y [?< (6/4)*, since y € Bs/4. So, h(0) < h on

Bd Rs, which means that the minimum point ¢ of h is in Rs. This ends the proof of
the claim. O

Now that we know that the minimum point ¢ occurs in the interior, we can apply
the second lemma to h to obtain

oh
—()=0, j=1,...,n. 2.84
axj(c) Oa ] ) y T ( 8)

From the definition of h,

(e)=0,i=1,....n, (2.85)



SO

Oh & of; .
—(c)=29 (c) —y,)——(c) = =1,....n. 2.
5, ) ;oﬂ(c) W), (©) =0 i=1....n (2.86)
Note that
det | 211 ()| #0 (2.87)
833j ’ '
so, by Cramer’s Rule,
n

Let Uy = Rs ~ f~'(Bs/4), where we have chosen V = Bj/y. We have shown that
f is a bijective map.

Claim. The map f~':V — U, is continuous.

Proof. Let a,b € V, and define x = f~'(a) and y = f~'(b). Then a = f(z) and
b=f(y).

Oz —y|
o=t = ()~ fw) = 224 (2.50)
SO |
a0 = 2177 (@)~ )] (2.90)
This shows that f~' is continuous on V' = By . O
As a last item for today’s lecture, we show the following:
Claim. The map f~' is differentiable at 0, and Df~1(0) = I.
Proof. Let k € R™ — {0} and choose k=0. We are trying to show that
-1 k) — f~40) = Df~Y0)k
f0+k) f“ﬂ(o) F7OF sk — o0, (2.91)
We simplify
fHO+E) = f7H0) = D0k fTH(K) — K (2.92)
|| k[ '
Define h = f~1(k) so that k = f(h) and |k| < 2|h|. To show that
(k) —k
% —0ask — 0, (2.93)
it suffices to show that S g
% —0ash—0. (2.94)
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That is, it suffices to show that

h_‘Tf‘(h) —0as h— 0. (2.95)

But this is equal to

which goes to zero as h — 0 because f is differentiable at zero. O

The proof of the Inverse Function Theorem continues in the next lecture.
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Lecture 7

We continue our proof of the Inverse Function Theorem.

As before, we let U be an open set in R", and we assume that 0 € U. We let
f: U — R" be a C' map, and we assume f(0) = 0 and that Df(0) = I. We
summarize what we have proved so far in the following theorem.

Theorem 2.18. There exists a neighborhood Uy of 0 in U and a neighborhood V' of
0 wn R™ such that

1. f maps Uy bigectively onto V
2. {1V — Uy is continuous,
3. f71 is differentiable at 0.

Now, we let U be an open set in R”, and we let f : U — R” be a C? map, as before,
but we return to our original assumptions that a € U, b = f(a), and Df(a) : R* — R"
is bijective. We prove the following theorem.

Theorem 2.19. There exists a neighborhood Uy of a in U and a neighborhood V' of
b in R™ such that

1. f maps Uy bijectively onto V
2. f71:V — U, is continuous,
3. f~1 is differentiable at b.

Proof. The map f: U — R" maps a to b. Define U' =U —a={x—a:2 € U}. Also
define f, : U' — R™ by fi(z) = f(z + a) — b, so that f1(0) =0 and Df,(0) = Df(a)
(using the Chain Rule).

Let A= Df(a) = Df1(0). We know that A is invertible.

Now, define fy : U' — R™ by fo = A71f}, so that fo(0) = 0 and Df,(0) = I.
The results from last lecture show that the theorem at hand is true for f;. Because
fi1 = Ao fy, the theorem is also true for f;. Finally, because f(x) = fi(z —a)+b, the
theorem is true for f. O

So, we have a bijective map f : Uy — V. Let us take ¢ € U, and look at the
derivative

dfi
Df) ~ | 52| = rto) (2.97)
Note that
Df(c) is bijective <= det Bﬂ{ (c)} £0. (2.98)

Because f is C!, the functions % are continuous on Uj. If det Js(a) # 0, then

J

det J¢(c) # 0 for ¢ close to a. We can shrink Uy and V such that det Js(c) # 0 for
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all ¢ € Uy, so for every ¢ € Uy, the map f~! is differentiable at f(c). That is, f~! is
differentiable at all points of V.
We have thus improved the previous theorem. We can replace the third point
with
3. f~! is differentiable at all points of V. (2.99)
Let f~! = g, so that g o f = identity map. The Chain Rule is used to show the

following. Suppose p € Uy and ¢ = f(p). Then Dg(q) = Df(p)~*, so J,(q) = Jr(p)~*.
That is, for all z € V,

g dfi -
= . 2.100
)] = | (2.100)
The function f is Ct, so gij_ is continuous on Uj. It also follows that g is continuous,
SO %(g(m)) is continuous on V.

Using Cramer’s Rule, we conclude that the entries of matrix on the r.h.s. of
Equation 2.100 are continuous functions on V. This shows that ngE is continuous on
V, which implies that ¢ is a C! map.

We leave as an exercise to show that f € C" implies that g € C" for all ». The
proof is by induction.

This concludes the proof of the Inverse Function Theorem, signifying the end of
this section of the course.

O

3 Integration

3.1 Riemann Integral of One Variable

We now begin to study the next main topic of this course: integrals. We begin our
discussion of integrals with an 18.100 level review of integrals.

We begin by defining the Riemann integral (sometimes written in shorthand as
the R. integral).

Let [a,b] € R be a closed interval in R, and let P be a finite subset of [a, b]. Then
P is a partition if a,b € P and if all of the elements ¢;,...,ty in P can be arranged
such that t; = a <ty < -+ < t, =b. We define I; = [t;,t;+1], which are called the
subintervals of [a, b] belonging to P.

Let f : [a,b] — R be a bounded function, and let I; be a subinterval belonging to
P. Then we define

m; =inf f: [; = R

3.1
M;=supf:1I; = R, (3:1)
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from which we define the lower and upper Riemann sums

L(f,P)= Zmi X (length of ;)

(3.2)
U(f,P) =) M; x (length of I;),
respectively.
Clearly,
L(f,P) < U(f, P). (3.3)
Now, let P and P’ be partitions.
Definition 3.1. The partition P is a refinement of P if P’ D P.
If P is a refinement of P, then
L(f,P") > L(f,P), and
(f.P) 2 LU, P), an -,

U(f, P") <U(f, P).

If P and P’ are any partitions, then you can take P” = P U P’, which is a refinement
of both P and P’. So,

L(f,P) < L(f,P") <U(f,P") < U(f, P) (3.5)

for any partitions P, P’. That is, the lower Riemann sum is always less than or equal
to the upper Riemann sum, regardless of the partitions used.
Now we can define the Lower and Upper Riemann integrals

f =Llub. {L(f, P)|P a partition of [a, b]}

“—la,b]

_ (3.6)
f=glb. {U(f, P)|P a partition of [a,b]}

[a,b]
i [r (37)
Z f= 7f- (3.8)

Definition 3.2. For any bounded function f : [a,b] — R, the function f is (Riemann)

integrable if o
| =] (3.9)
Z_[a,b] [a,0]

In the next lecture we will begin to generalize these notions to multiple variables.

We can see from the above that

Claim. If f is continuous, then
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Lecture 8

3.2 Riemann Integral of Several Variables

Last time we defined the Riemann integral for one variable, and today we generalize
to many variables.

Definition 3.3. A rectangle is a subset ) of R™ of the form
Q = [al,bl] X e X [an,an (310)
where a;, b; € R.

Note that = = (x1,...,2,) € Q@ <= a; < x; < b; for all i. The volume of the
rectangle is

v(Q) = (bi — ar) -+ (by — an), (3.11)
and the width of the rectangle is

width(Q) = sup(b; — a;). (3.12)

)

Recall (stated informally) that given [a,b] € R, a finite subset P of [a,b] is a
partition of [a,b] if a,b € P and you can write P = {t; : i = 1,..., N}, where
ti=a <ty <...<ty=">b An interval I belongs to P if and only if I is one of the
intervals [t;, t;11].

Definition 3.4. A partition P of @ is an n-tuple (Py,..., P,), where each P; is a
partition of [a;, b;].

Definition 3.5. A rectangle R = I x - -- x I, belongs to P if for each i, the interval
I; belongs to P;.

Let f: @ — R be a bounded function, let P be a partition of (), and let R be a
rectangle belonging to P.

We define

mprf =inf f = glb. {f(z) :xz € R}

f (3.13)
Mgf =sup f =1lub. {f(z): 2 € R}, '

R

from which we define the lower and upper Riemann sums,
L(f,P) =) _mz(f)u(R)
(3.14)

R
U(f,P) =S Ma(f)o(R).
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It is evident that
L(f,P) < U(f,P). (3.15)

Now, we will take a sequence of partitions that get finer and finer, and we will
define the integral to be the limit.

Let P = (Py,...,P,) and P' = (P],..., P.) be partitions of ). We say that P’
refines P if P/ D P, for each 1.

Claim. If P’ refines P, then
L(f,P") > L(f.P). (3.16)

Proof. We let P; = P for j # i, and we let P/ = P; U {a}, where a € [a;,b;]. We
can create any refinement by multiple applications of this basic refinement. If R is a
rectangle belonging to P, then either

1. R belongs to P’, or
2. R= R UR", where R', R” belong to P’.

In the first case, the contribution of R to L(f, P') equals the contribution of R to
L(f, P), so the claim holds.

In the second case,

mpv(R) = mg(v(R') +v(R")) (3.17)
and
=i < i . .
m, 1%ff < %f fs 1]gff (3.18)
So,
meg < mpgr, Mg (319)

Taken altogether, this shows that
mrv(R) < mprv(R') + mgv(R") (3.20)
Thus, R’ and R” belong to P’. ]
Claim. If P’ refines P, then
U(f.P) < U(f.P) (3.21)

The proof is very similar to the previous proof. Combining the above two claims,
we obtain the corollary

Corollary 2. If P and P’ are partitions, then

U(f,P") > L(f,P) (3.22)
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Proof. Define P" = (PLUP{,...,P,UP)). So, P" refines P and P’. We have shown
that

U(f, P") <U(f,P)

L(f, P') < L(f, P") (3.23)

L(f, P") < U(f, P").

Together, these show that

U(f, P) > L(f,P'). (3.24)

O
With this result in mind, we define the lower and upper Riemann integrals:

| f=swisp

J g P

_ (3.25)

/Qf:i%fU(f,P).

1 I 7@ f (3.26)

Finally, we define Riemann integrable.

Clearly, we have

Definition 3.6. A function f is Riemann integrable over () if the lower and upper
Riemann integrals coincide (are equal).

3.3 Conditions for Integrability

Our next problem is to determine under what conditions a function is (Riemann)
integrable.
Let’s look at a trivial case:

Claim. Let F': Q — R be the constant function f(x) = c. Then f is R. integrable
over (Q, and

/ c=cv(Q). (3.27)
Q

Proof. Let P be a partition, and let R be a rectangle belonging to P. We see that
mg(f) = Mg(f) = ¢, so

U(f,P) =Y Mgp(f)v(R)=cY v(R)
= cv(Q).

(3.28)
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Similarly,
L(f, P) = cv(Q). (3.29)
O

Corollary 3. Let @ be a rectangle, and let {Q; : i = 1,...,N} be a collection of
rectangles covering Q. Then

(@) <Y v(Qy). (3.30)
Theorem 3.7. If f : Q — R is continuous, then f is R. integrable over Q).
Proof. We begin with a definition

Definition 3.8. Given a partition P of (), we define

mesh width(P) = sup width(R). (3.31)
R

Remember that
Q) compact = f:@Q — R is uniformly continuous. (3.32)

That is, given € > 0, there exists § > 0 such that if 2,y € @ and |z — y| < J, then

[f(z) = f(y)| <e

Choose a partition P of () with mesh width less than §. Then, for every rectangle
R belonging to P and for every =,y € R, we have |x — y| < §. By uniform continuity
we have, Mgp(f) — mg(f) < ¢, which is used to show that

U(f,P) = L(f.P) = (Mg(f) — mg(f))v(R)
R
< Y u(R) (3.33)
< ev(Q).

We can take € — 0, so
sup L(f, P) = ir}gf U(f,P), (3.34)
P

which shows that f is integrable. m

We have shown that continuity is sufficient for integrability. However, continuity
is clearly not necessary. What is the general condition for integrability? To state the
answer, we need the notion of measure zero.

Definition 3.9. Suppose A C R". The set A is of measure zero if for every € >
0, there exists a countable covering of A by rectangles ()1,Q2,Qs,... such that

Zi U(Ql) < €.
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Theorem 3.10. Let f : Q — R be a bounded function, and let A C ) be the set
of points where f is not continuous. Then f is R. integrable if and only if A is of
measure zero.

Before we prove this, we make some observations about sets of measure zero:

1. Let A, B C R™ and suppose B C A. If A is of measure zero, then B is also of
measure Zzero.

2. Let A; CR" fori=1,2,3,..., and suppose the A;’s are of measure zero. Then
UA,; is also of measure zero.

3. Rectangles are not of measure zero.

We prove the second observation:
For any € > 0, choose coverings @;1,Q;2,... of A; such that each covering has
total volume less than €/2°. Then {@Q;;} is a countable covering of UA, of total volume

225 =« (3.35)

=1
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Lecture 9

We quickly review the definition of measure zero.
A set A C R" is of measure zero if for every € > 0, there exists a covering of A by
rectangles Q1, Q2, @3, ... such that the total volume > v(Q;) < €.

Remark. In this definition we can replace “rectangles” by “open rectangles.” To

see this, given any € > 0 let Q1,Q2,... be a cover of A with volume less than €/2.
Next, choose @} to be rectangles such that Int Q; D @Q; and v(Q}) < 2v(Q;). Then
Int Q},Int Q5,... cover A and have total volume less than e.

We also review the three properties of measure zero that we mentioned last time,
and we prove the third.

1. Let A, B C R" and suppose B C A. If A is of measure zero, then B is also of
measure Zero.

2. Let A; CR" fori=1,2,3,..., and suppose the A;’s are of measure zero. Then
UA; is also of measure zero.

3. Rectangles are not of measure zero.
We prove the third property:
Claim. If Q) is a rectangle, then () is not of measure zero.

Proof. Choose ¢ < v(Q). Suppose (Qq,Q2,... are rectangles such that the total
volume is less than e and such that Int @1, Int Q)5,... cover Q.

The set () is compact, so the H-B Theorem implies that the collection of sets
Int Qq,...,Int Qn cover @ for N sufficiently large. So,

N
QclJaes, (3.36)
i=1
which implies that
(@) <D v(Q) < e <v(Q), (3.37)
i=1
which is a contradiction. O

We then have the following simple result.
Claim. If Int A is non-empty, then A is not of measure zero.

Proof. Consider any p € Int A. There exists a 0 > 0 such that U(p,d) = {z : |[x—p| <
0} is contained in A. Then let Q = {x : |t —p| < d}. It follows that if A is of measure
zero, then () is of measure zero, by the first property. We know that @) is not of
measure zero by the third property. O]
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We restate the necessary and sufficient condition for R. integrability from last
time, and we now prove the theorem.

Theorem 3.11. Let Q be a rectangle and f : QQ — R be a bounded function. Let D
be the set of points in () where f is not continuous. Then f is R. integrable if and
only if D s of measure zero.

Proof. First we show that
D is of measure zero = f is R. integrable (3.38)

Lemma 3.12. Let Q = [ay, b1] X -+ X [a,, by, and let Q*,ac =1,... N, be a covering
of Q by rectangles. Then there exists a partition P of ) such that every rectangle R
belonging to P is contained in Q% for some a.

Proof. Write out Q% = I{ x --- x I, and let

P; = (U Endpoints of [f‘) N laj, b;] U {a;,b;}. (3.39)

One can show that P; is a partition of [a;, b;], and P = (P, ..., P,) is a partition of
() with the above properties. O

Let f: @ — R be a bounded function, and let D be the set of points at which f
is discontinuous. Assume that D is of measure zero. We want to show that f is R.
integrable.

Let € > 0, and let Q},i = 1,2,3,... be a collection of rectangles of total volume
less than e such that Int @}, @5, ... cover D.

If p € Q—D, we know that f is continuous at p. So, there exists a rectangle ), with
peInt @, and |f(z) — f(p)| < ¢€/2 for all z € Q, (for example, Q, = {z||z —p| <}
for some 0). Given any z,y € @, we find that |f(z) — f(y)| < e.

The rectangles Int Q,,p € Q — D along with the rectangles Int Q},7 = 1,2, ...
cover (). The set () is compact, so the H-B Theorem implies that there exists a finite
open subcover:

Qi=Int Qp,i=1,....0 IntQjj=1,.... L (3.40)

Using the lemma, there exists a partition P of ) such that every rectangle belonging
to P is contained in a Q; or a Q7.
We now show that f is R. integrable.

U(f, P) = L(f,P) =Y _(Mg(f) — mr(f))v(R)

R (3.41)
+ > (Mp(f) = mr(f))o(R),
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where each R in the first sum belongs to a );, and each R’ in the second sum belongs

to a Q.
We look at the first sum. If z,y € R C @), then |f(x) — f(y)| <e. So, Mg(f) —
mg(f) < e. It follows that

Mg(f) —mpg v(R) <e v(R
;( (f) (/)v(R) % (R) (3.42)

< 0 (Q).

We now look at the second sum. The function f : ) — R is bounded, so there
exists a number ¢ such that —¢ < f(z) < cforall x € Q. Then, Mp/(f)—mp (f) < 2¢
SO

> (Mp(f) = fr(HWER) <2¢) o(R)

R’ R’
¢
= 2c v(R')
3P, (.43
<2e) v(Q))
< QCE.Z
Substituting back into Equation 3.41, we get
U(f,P) = L(f,P) < e(v(Q) + 2c). (3.44)
So, -
/ f - / f < c(v(Q) +20), (3.45)
Q 29
because s
U(f,P)> d L(f,P) < : 3.46
(1.P)= [ g and 17, ZQf (3.16)

Letting € go to zero, we conclude that

7Qf - Z K (3.47)

which shows that f is Riemann integrable.
This concludes the proof in one direction. We do not prove the other direction. [

Corollary 4. Suppose f : Q — R is R. integrable and that f > 0 everywhere. If
fQ f =0, then f =0 except on a set of measure zero.
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Proof. Let D be the set of points where f is discontinuous. The function f is R.
integrable, so D is of measure zero.

If pe Q— D, then f(p) = 0. To see this, suppose that f(p) =6 > 0. The function
f is continuous at p, so there exists a rectangle Ry centered at p such that f > nd/2
on Ry. Choose a partition P such that Ry is a rectangle belonging to P. On any
rectangle R belonging to P, f > 0, so mg(f) > 0. This shows that

L(f, P) = mg,(f)v(Ro) + Z mp(f)v(R)
R#Ro (3.48)

But we assumed that fQ f =0, so we have reached a contradiction. So f = 0 at all
points p € Q — D. H
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Lecture 10

We begin today’s lecture with a simple claim.

Claim. Let Q C R" be a rectangle and f,g : Q — R be bounded functions such that

f<g. Then
ZQfSZ g (3.49)

Proof. Let P be a partition of (), and let R be a rectangle belonging to P. Clearly,
mg(f) < mr(g), so

L(f,P) =Y mg(f)o(R) (3.50)

L(g,P) =Y ma(g)v(R) (3.51)

= L(f,P) < L(g, P) S/ g, (3.52)
L Q

for all partitions P. The lower integral

/ f (3.53)
—Q
is the Lu.b. of L(f, P), so
/ f< / g. (3.54)
—Q —Q
O
Similarly, o o
[/ (3.55)
Q Q
It follows that if f < g, then
< / g. (3.56)
Q Q

This is the monotonicity property of the R. integral.

3.4 Fubini Theorem

In one-dimensional calculus, when we have a continuous function f : [a,b] — R, then
we can calculate the R. integral

/ f(@)dz = F(b) — F(a), (3.57)
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where F' is the anti-derivative of f.
When we integrate a continuous function f : () — R over a two-dimensional
region, say () = [a1, b1] X [ag, bs], we can calculate the R. integral

b1 bo b1 ba
- y)dady = y)dzd 3.58
Lf A ™ e pasay ll(wf@wwy> (3.59)

That is, we can break up Q into components and integrate separately over those
components. We make this more precise in the following Fubini Theorem.

First, we define some notation that will be used.

Let n = k + ¢ so that R® = R! x R®. Let ¢ = (cy,...,¢,) € R". We can write

¢ = (a,b), where a = (c1,...,¢) € RF and b = (cpy1,...,¢x1e) € RE Similarly,
let Q = I x ---1, be a rectangle in R". Then we can write () = A x B, where
A=IL x---xI, ¢ RF and B = I};; X --- X I4y € R’. Along the same lines, we
can write a partition P = (Py, ..., P,) as P = (Pa, Pg), where P4y = (P, ..., P;) and
Pp = (Pk+1,---,Pk+£)-
Fubini Theorem. Let f : Q — R be a bounded function and Q = A X B a rectangle
as defined above. We write [ = f(x,y), where x € A, and y € B. Fizing x € A, we
can define a function f, : B — R by f.(y) = f(z,y). Since this function is bounded,
we can define new functions g,h : A — R by

g(x) = /fx, (3.59)

/ S (3.60)

Note that g < h. The Fubini Theorem concludes the following: If f is integrable over
Q, then g and h are integrable over A and

/Ag:/Ah:/Qf. (3.61)

Proof. Let P = (Pa, Pg) be a partition of @), and let R = R4 X Rp be a rectangle
belonging to P (so R4 belongs to P4 and Rp belongs to Pg). Fix zg € A.
First, we claim that

Mpyxrp () < Mg, (fu), (3.62)

the proof of which is straightforward.
Next,

Z mp,xrp([)V(Rp) < ZmRB(fa:o)'U(RB)
= I fxo, Pg) (3.63)

/ fzo = g(20).
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So,
> mmseny (Fo(Rp) < glxo) (3.64)

for all o € R4. The above equation must hold for the infimum of the r.h.s, so

ZmRAXRB RB) < mRA(g)‘ (365)

Observe that v(R4 X Rg) = v(Ra)v(Rp), so

Z mRAxRB(f)U(RA x Rp)

RAaXRp

<Y me,(9)v(Ra) (3.66)

<[
A

We have just shown that for any partition P = (Pya, Pg),

L(f, P) < L(g, PA)S/ g, (3.67)
A

1 RE / o (3.68)

SO

By a similar argument, we can show that

/ / (3.69)
Summarizing, we have shown that

Z / h< / f (3.70)

where we used monotonicity for the middle inequality. Since f is R. integrable,

= 7Q f (3.71)

so all of the inequalities are in fact equalities. m

|\
L)
~
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Remark. Suppose that for every x € A, that f, : B — R is R. integrable. That’s
the same as saying g(x) = h(x). Then

AVESRIREVALED) o

= [z, y)dxdy,
AxB

using standard notation from calculus.

Remark. In particular, if f is continuous, then f, is continuous. Hence, the above
remark holds for all continuous functions.

3.5 Properties of Riemann Integrals
We now prove some standard calculus results.

Theorem 3.13. Let Q C R"™ be a rectangle, and let f,g : Q — R be R. integrable
functions. Then, for all a,b € R, the function af + bg is R. integrable and

/Qaf+bg:a/Qf+b/Qg. (3.73)

Proof. Let’s first assume that a,b < 0. Let P be a partition of () and R a rectangle
belonging to P. Then

amp(f) +bmg(g) < mg(af + bg), (3.74)

SO

alL(f,P)+bL(g,P) < L(af + bg, P)

- ZQaf b (3.75)

Claim. For any pair of partitions P’ and P”,

aL(f, P') +bL(g, P") g/ af + bg. (3.76)
—Q

To see that the claim is true, take P to be a refinement of P’ and P”, and apply

Equation 3.75. Thus,
a/ f+b/g§/af+bg. (3.77)
—Q —Q —Q

Similarly, we can show that

7Qaf +bg < a/Qf + b7Qg. (3.78)
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Since f and g are R. integrable, we know that

7Qf= 1 K 7Q9: Z o (3.79)

These equalities show that the previous inequalities were in fact equalities, so

/Qaf+bg:a/;2f—|—b/Qg. (3.80)

However, remember that we assumed that a,b > 0. To deal with the case of
arbitrary a, b, it suffices to check what happens when we change the sign of a or b.

/Q—f:—/Qf. (3.81)

Proof Hint. Let P be any partition of Q). Then L(f, P) = —U(—f, P).

Claim.

You should check this claim, and then use it to complete the proof. O
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Lecture 11

We review some basic properties of the Riemann integral.
Let Q C R™ be a rectangle, and let f,g : ¢ — R be bounded functions. Assume
that f, g are R. integrable. We have the following properties of R. integrals:

e Linearity: a,b € R = af + bg is R. integrable and

/Qaf—i-bg:a/Qf—l—b/Qg. (3.82)

e Monotonicity: If f < g, then
/fS/g (3.83)
Q Q

e Maximality Property: Let h : @ — R be a function defined by h(z) =
max(f(z), g(x)).

Theorem 3.14. The function h is R. integrable and

/thmax (/Qf/Qg) (3.84)

Proof. We need the following lemma.

Lemma 3.15. If f and g are continuous at some point xry € Q, then h is
continuous at xg.

Proof. We consider the case f(zg) = g(x¢) = h(z¢) = r. The functions f and
g are continuous at x if and only if for every € > 0, there exists a 6 > 0 such
that |f(x) — f(zo)| < € and |g(z) — g(z0)| < € whenever |z — x| < 9.
Substitute in f(xg) = g(zo) = r. The value of h(x) is either f(z) or g(x), so
|h(x) — 7| < e for |x — x| < §. That is |h(z) — h(xg)| < € for |z — x| <, s0 h
is continuous at xg.

The proofs of the other cases are left to the student.

O
We defined h = max(f,g). The lemma tells is that & is integrable.
Define F, F', and G as follows:
E = Set of points in () where f is discontinuous, (3.85)
F = Set of points in ) where g is discontinuous, (3.86)
G = Set of points in ) where h is discontinuous. (3.87)
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The functions f, g are integrable over @) if and only if E, F' are of measure zero.
The lemma shows that G C E U F, so h is integrable over (). To finish the
proof, we notice that

h =max(f,g9) > f,g. (3.88)
Then, by monotonicity,
/thax(/f,/g). (3.89)
Q Q Q
O

Remark. Let £ = min(f, g). Then k = —max(—f, —g). So, the maximality property
also implies that k is integrable and

/Qk;gmm (/Qf/Qg) (3.90)

A useful trick for when dealing with functions is to change the sign. The preceding
remark and the following are examples where such a trick is useful.
Let f: @ — R be a R. integrable function. Define

f+ =max(f,0), f-=max(—f,0). (3.91)

Both of these functions are R. integrable and non-negative: f,, f- > 0. Also note
that f = f. — f_. This decomposition is a trick we will use over and over again.
Also note that |f| = fi + f_, so |f| is R. integrable. By monotonicity,

Am=4ﬂ+éﬂ
2/Qf+—/Qf_ (3.92)

s
Q
By replacing f by —f, we obtain

L= [ =5
y

Combining these results, we arrive at the following claim

/Qlflzl/Qf‘ (3.94)

Proof. The proof is above. O]

(3.93)

Claim.
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3.6 Integration Over More General Regions

So far we've been defining integrals over rectangles. Let us now generalize to other
sets.

Let S be a bounded set in R™, and let f : S — R be a bounded function. Let
fs : R™ — R be the map defined by

fs(z) =

{f(x) if v €9, (3.95)

0 ifx¢gs.
Let Q be a rectangle such that Int Q O S.

Definition 3.16. The map f is Riemann integrable over S if fg is Riemann integrable

over (). Additionally,
/f:/fs- (3.96)
S Q

One has to check that this definition does not depend on the choice of @), but we
do not check this here.

Claim. Let S be a bounded set in R™, and let f,g : S — R be bounded functions.
Assume that f,qg are R. integrable over S. Then the following properties hold:

o Linearity: If a,b € R, then af + bg is R. integrable over S, and

/Saf+bg:a/gf+b/sg. (3.97)

e Monotonicity: If f < g, then
/fg/g. (3.98)
S S

o Mazimality: If h = max(f,g) (over the domain S), then h is R. integrable over

S, and
/Shzmax </Sf,/sg>. (3.99)

Proof. The proofs are easy, and we outline them here.

e Linearity: Note that afs + bgs = (af + bg)s, so

/Saf+bg=/Q<af+bg>s
:a/Qfs+b/Qgs (3.100)

oo [
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e Monotonicity: Use f < g = f¢ < ygs.

e Maximality: Use h = max(f,g9) = hg = max(fs, gs).

Let’s look at some nice set theoretic properties of the Riemann integral.

Claim. Let S, T be bounded subsets of R™ with T" C S. Let f : S — R be bounded
and non-negative. Suppose that f is R. integrable over both S and T. Then

‘Afgéf (3.101)

Proof. Clearly, fr < fs. Let Q be a rectangle with S D Int Q. Then

théh (3.102)

]

Claim. Let Sy,55 be bounded subsets of R™, and let f : S1USy — R be a bounded
function. Suppose that f is R. integrable over both Sy and Sy. Then f is R. integrable
over S1 NSy and over S; U Sy, and

Lw$f:£$ﬂﬁéf—[;&f (3.103)

Proof. Use the following trick. Notice that

fS1U52 - maX(fSlv f52)7 (3104>
fS1I’75'2 = min(f517 fSQ)' (3105)

Now, choose () such that
Int Q D) Sl U SQ, (3106)

so fs,us, and fg,ng, are integrable over Q).
Note the identity

Isius, = fs1 + fss = fsins,- (3.107)

/QfleJSQ Z/QfsmL/Qfsg—/Qfsmsw (3.108)

from which it follows that

AN&fZéyﬂﬁéf—l;&f (3.109)

So,
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Lecture 12

So far, we have been studying only the Riemann integral. However, there is also
the Lebesgue integral. These are the two basic integral theories. The Riemann inte-
gral is very intuitive and is usually adequate for problems that usually come up. The
Lebesgue integral is not as intuitive, but it can handle more general problems. We do
not encounter these problems in geometry or physics, but we would in probability and
statistics. You can learn more about Lebesgue integrals by taking Fourier Analysis
(18.103) or Measure and Integration (18.125). We do not study the Lebesgue integral.

Let S be a bounded subset of R™.

Theorem 3.17. If the boundary of S is of measure zero, then the constant function
1 1s R. integrable over S. The converse is also true.

Proof. Let @ be a rectangle such that Int @ D S. Define

1 ifxes
15(z) = ’ 3.110
s(@) {0 if v ¢ S. (8.110)

The constant function 1 is integrable over S'if and only if the function 1g is integrable
over (). The function 1g is integrable over @) if the set of points D in () where 1g is
discontinuous is of measure zero. If so, then

/62132/51. (3.111)

1. If z € Int S, then 1g = 1 in a neighborhood of x, so 1g is continuous at x.

Let x € Q.

2. If x € Ext S, then 1g = 0 in a neighborhood of x, so 1g is continuous at x.

3. If x € Bd X, then in every neighborhood U of x there exists points in Ext S
where 1g = 0 and points in Int S where 1¢ = 1. So, 1g is discontinuous at x.

Thus, D is the boundary of S, D = Bd S. Therefore, the function 1g is integrable if
and only if Bd S is of measure zero. ]

3.7 Improper Integrals

Definition 3.18. The set S is rectifiable if the boundary of S is of measure zero. If
S is rectifiable, then

v(S) = / 1. (3.112)
S
Let us look at the properties of v(S5):
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1. Monotonicity: If S; and Sy are rectifiable and S; C Sy, then v(S;) < v(Ss).
2. Linearity: If S, S are rectifiable, then S; U Sy and S7 NSy are rectifiable, and

U(Sl U SQ) = U(Sl) + U(SQ) — U(Sl N SQ) (3113)

3. If S is rectifiable, then v(S) = 0 if and only if S is of measure zero.
4. Let A =1Int S. If S is rectifiable, then A is rectifiable, and v(S) = v(A).

The first two properties above are special cases of the theorems that we proved last
lecture:

1.
/ 1 g/ if 5 C Ss. (3.114)
S1 So

/ 1:/ 1+/1—/ 1. (3.115)
S1US> S1 Sa2 S1NSa

To see the the third and fourth properties are true, we use some previous results. Let
(@ be a rectangle, and let f : ) — R be R. integrable. We proved the following two
theorems:

Theorem A. If f >0 and fQ f =0, then f =0 except on a set of measure zero.

Theorem B. If f =0 except on a set of measure zero, then fs f=0.

Property 3. above is a consequence of Theorem A with f = 1g.

Property 4. above is a consequence of Theorem B with f = 1g — 14.

We are still lacking some simple criteria for a bounded set to be integrable. Let
us now work on that.

Let S be a bounded set, and let f : S — R be a bounded function. We want
simple criteria on S and f such that f to be integrable over S.

Theorem 3.19. If S is rectifiable and f : S — R is bounded and continuous, then f
is R. integrable over S.

Proof. Let @ be a rectangle such that Int @ D S. Define fg: @ — R by
f(z) ifzes,
= 3.116
fs(@) {o if o ¢ S. (3.116)

By definition, f is integrable over S if and only if fg is integrable over ). If so then
f s f= fQ [s-

Let D be the set of points in () where fg is discontinuous. Then fg is integrable
over () if and only if D is of measure zero. What is D?
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1. If x € Int S, then fg¢ = f in a neighborhood of z, so fg is continuous at x.
2. If z € Ext S, then fg¢ = 0 in a neighborhood of z, so fg is continuous at z.

So, we know that D C Bd S. Because S is rectifiable, the boundary of S has measure
zero, so D has measure zero. Thus, fg is R. integrable, and therefore so is f. O]

Theorem 3.20. Let A be an open subset of R". There exists a sequence of compact
rectifiable sets Cy, N = 1,2,3,... such that

CN Q Int ON+1 (3117)

and

oy =4 (3.118)
Definition 3.21. The set {Cy} is called an ezhaustion of A.

Proof. Take the complement of A, namely B = R" — A. Define d(x, B) = inf ep{|z —
y|}. The function d(z, B) is a continuous function of x (the theorem for this is in
section 4 of Munkres). Let

Dy={x€ A:d(z,B) >1/N and |z| < N}. (3.119)

The set Dy is compact. It is easy to check that Dy C Int Dy, 1.

Claim.

Dy =A (3.120)

Proof. Let x € A. The set A is open, so there exists ¢ > 0 such that the set
{y e R": |y — x| < €} is contained in A. So, d(z, B) > e.

Now, choose N such that 1/N < e and such that |x| < N. Then, by definition,
x € Dy. Therefore UDy = A. O

So, the Dy’s satisfy the right properties, except they are not necessarily rectifiable.
We can make them rectifiable as follows.

For every p € Dy, let @), be a rectangle with p € Int @), and @, C Int Dyyq.
Then the collection of sets {Int (), : p € Dy} is an open cover of Dy. By the H-B

Theorem, there exists a finite subcover Int @,,,...,Int @, . Now, let
Cn=QpU-UQ,,. (3.121)
Then Cy C Int Dy C Int Cyyg. O
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Lecture 13

Let A be an open set in R”, and let f : A — R be a continuous function. For the
moment, we assume that f > 0. Let D C A be a compact and rectifiable set. Then
f|D is bounded, so [ p [ 1s well-defined. Consider the set of all such integrals:

# = {/ f:D C A, D compact and rectifiable}. (3.122)
D

Definition 3.22. The improper integral of f over A exists if x is bounded, and we
define the improper integral of f over A to be its L.u.b.

#
/ f =Lub. / f = improper integral of f over A. (3.123)
A D

Claim. If A is rectifiable and f : A — R is bounded, then

/A#f _ /Af. (3.124)

Proof. Let D C A be a compact and rectifiable set. So,

/D ;< /A / (3.125)

= sgP/jijAf (3.126)
— /A#fg/Af. (3.127)

The proof of the inequality in the other direction is a bit more complicated.
Choose a rectangle ) such that A C Int ). Define f4 : Q — R by

) flx) ifxe A,
fa(z) = {0 g A (3.128)

/Af_/QfA. (3.129)

Now, let P be a partition of ), and let Ry,..., R, be rectangles belonging to a
partition of A. If R is a rectangle belonging to P not contained in A, then R— A # ¢.
In such a case, mgr(fa) =0. So

By definition,

k
L(fa, P) = ZmRi(fA)U(Ri>- (3.130)
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On the rectangle R;,

fa=[f>mg,(fa) (3.131)
So,
S )<Y [ f
— 7 (3.132)

where D = |J R;, which is compact and rectifiable.
The above was true for all partitions, so

fa< #f. (3.133)
f= ]

We proved the inequality in the other direction, so

f= ' f (3.134)
-,

3.8 Exhaustions

Definition 3.23. A sequence of compact sets C;,7 = 1,2,3... is an exhaustion of A
if C; C Int C;, for every i, and | JC; = A.

It is easy to see that

Jmt ¢; = A. (3.135)

Let C;, 1 = 1,2,3,... be an exhaustion of A by compact rectifiable sets. Let
f A — R be continuous and assume that f > 0. Note that

/Ci /= /C I, (3.136)

/ fi=123. . (3.137)
C;

since Cij—1 D C;. So

is an increasing (actually, non-decreasing) sequence. Hence, either fc‘ f — oo as
i — 00, or it has a finite limit (by which we mean lim;_. ., fc- f exists).
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Theorem 3.24. The following two properties are equivalent:
1. fff exists,
2. lim;_ oo fCi f exists.

Moreover, if either (and hence both) property holds, then

/ f = lim f (3.138)
Proof. The set C; is a compact and rectifiable set contained in A. So, if
#
/ f exists, then (3.139)
A
#
/ f< / f (3.140)
Ci A
That shows that the sets
/ f,i=1,23... (3.141)
C;
are bounded, and
#
lim f< / f (3.142)
71— 00 3 A

Now, let us prove the inequality in the other direction.
The collection of sets {Int C; : i = 1,2,3...} is an open cover of A. Let D C A
be a compact rectifiable set contained in A. By the H-B Theorem,

N
DcC|Jmt C;, (3.143)

for some N. So, D C Int Cy C Cy. For all such D,

/ f< f < lim f (3.144)
Taking the infimum over all D, we get
#
f < lim f (3.145)
A =g

We have proved the inequality in both directions, so

1—00

/ r=tm [ (3.146)
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A typical illustration of this theorem is the following example.

Consider the integral
Udx

0 VT
which we wrote in the normal integral notation from elementary calculus. In our

notation, we would write this as
1
. (3.148)
/(0,1) VT

(3.147)

Let Cy = [,1 — +]. Then

/(01 N Nhinoo/ NG (3.149)

:2\/E|1/]\1/ — 2 as N — oo.

So,
— =2 3.150

Let us now remove the assumption that f > 0. Let f : A — R be any continuous
function on A. As before, we define

f+(x) = max{f(z),0}, (3.151)
f-(x) = max{—f(x),0}. (3.152)

We can see that f, and f_ are continuous.

Definition 3.25. The improper R. integral of f over A exists if and only if the
improper R. integral of f, and f_ over A exist. Moreover, we define

/A#fz/A#f+—/A#f_. (3.153)

We compute the integral using an exhaustion of A.

[r=m (o] 7)

= lim f

N—oo

(3.154)

Note that |f| = f+ + f_, so

lim (/ for | r) = [ (3.155)
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Therefore, the improper integral of f exists if and only if the improper integral of | f|
exists.
Define a function f: R — R by

0 ifx <0
= - 3.156
/(@) {e‘l/x itz > 0. ( )
This is a C*°(R) function. Clearly, f'(z) = f"(x) = ... = 0 when z = 0, so in the

Taylor series expansion of f at zero,

> apz" =0, (3.157)

all of the coefficients a,, are zero. However, f has a non-zero value in every neighbor-
hood of zero.
Take a € R and € > 0. Define a new function g, 44 : R — R by

flx—a)
r—a)+ fla+e—x)

Jaare(T) = i (3.158)

The function g, .+ is a C*°(R) function. Notice that

0 ifz<a
a,ate — - 3.159
Jaat {1 ifx>a-+e ( )

Take b such that @ < a + € < b — € < b. Define a new function h,;, € C*(R) by

hap(2) = Gaare(T)(1 = ga—ep(@))- (3.160)
Notice that
0 ifz <a,
hep =41 fate<az<b—e, (3.161)
0 ifb<uz.
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Lecture 14

As before, let f: R — R be the map defined by
0 if x <0,
flz) = { Ve (3.162)

e~ if z > 0.

This is a Cinf(R) function. Take the interval [a,b] € R and define the function
fap : R = R by fop(z) = f(z —a)f(b—z). Note that f,, > 0 on (a,b), and f,, =0
on R — (a,b).

We generalize the definition of f to higher dimensions. Let @ C R" be a rectangle,
where @ = [a1,b1] X -+ X [an, by]. Define a new map fg : R* — R bye

folxr, ... xn) = fay o (1) - - fan b (Tn)- (3.163)

Note that fo > 0 on Int @), and that fo =0 on R" — Int Q.

3.9 Support and Compact Support

Now for some terminology. Let U be an open set in R, and let f : U — R be a
continuous function.

Definition 3.26. The support of f is

supp f={x € U : f(x) # 0}. (3.164)

For example, supp fo = Q.

Definition 3.27. Let f : U — R be a continuous function. The function f is
compactly supported if supp f is compact.

Notation.
CE(U) = The set of compactly supported C* functions on U. (3.165)

Suppose that f € C5(U). Define a new set U; = (R"—supp f). Then UUU; = R™,
because supp f CU.
Define a new map f : R® — R by

= Jf onU,
f= {0 on U, (3.166)

The function f is C* on U and C* on Uy, so f is in CE(R™).
So, whenever we have a function f € C* is compactly supported on U, we can

drop the tilde and think of f as in C§(R™).
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3.10 Partitions of Unity
Let {U, : « € I} be a collection of of open subsets of R™ such that U = U,U,.
Theorem 3.28. There exists a sequence of rectangles QQ;, 1 = 1,2,3,... such that
1. Int Q;, 1 =1,2,3... is a cover of U,
2. Fach Q; C 1, for some «,

3. For every point p € U, there exists a neighborhood U, of p such that U,NQ; = ¢
for all i > N,,.

Proof. Take an exhaustion Ay, Ag, A3, ... of U. By definition, the exhaustion satisfies

A; Clnt Ay
A; is compact

We previously showed that you can always find an exhaustion.

Let B; = A; — Int A;_1. For each x € B;, let ), be a rectangle with x € Int @,
such that @, C U,, for some alpha, and @, C Int A;; — A;_». Then, the collection
of sets {Int @, : x € B;} covers B;. Each set B, is compact, so, by the H-B Theorem,
there exists a finite subcover Int @),, =Int Q;,, r=1,..., N,.

The rectangles Q;,,1 < r < N;,i = 1,2,3... satisfy the hypotheses of the the-
orem, after relabeling the rectangles in linear sequence @, Q2, @3, etc. (you should
check this). O

The following theorem is called the Partition of Unity Theorem.
Theorem 3.29. There exist functions f; C C°(U) such that

1. fi =20,

2. supp f; C U,, for some a,

3. For every p € U, there exists a neighborhood U, of p such that U,Usupp f; = ¢
for alli > N,,

4. > fi=1
Proof. Let Q;,1 = 1,2,3,... be a collection of rectangles with the properties of the
previous theorem. Then the functions fg,,7 = 1,2,3,... have all the properties

presented in the theorem, except for property 4. We now prove the fourth property.
We now that fo, > 0 on Int @Q;, and {Int Q); : i =1,2,3,...} is a cover of U. So, for
every p € U, fo,(p) > 0 for some i. So

> fo. >0 (3.167)
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We can divide by a nonzero number, so we can define

fa,
Zi:l f Qi
This new function satisfies property 4. Note that the infinite sum converges because
the sum has only a finite number of nonzero terms. O]
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Lecture 15

We restate the partition of unity theorem from last time. Let {U, : « € I} be a
collection of open subsets of R™ such that

U=|JU.. (3.169)
ael
Theorem 3.30. There exist functions f; C C°(U) such that

1. fl > 0;
2. supp f; € U,, for some «,

3. For every p € U, there exists a neighborhood U, of p such that U, Nsupp f; = ¢
for alli > N,,

4.2 fi=1
Remark. Property (4) makes sense because of property (3), because at each point
it is a finite sum.

Remark. A set of functions satisfying properties (1), (3), and (4) is called a partition
of unity.

Remark. Property (2) can be restated as “the partition of unity is subordinate to
the cover {U, : a € I}.”

Let us look at some typical applications of partitions of unity.
The first application is to improper integrals. Let ¢ : U — R be a continuous

map, and suppose
/ ) (3.170)
U

is well-defined. Take a partition of unity »_ f; = 1. The function f;¢ is continuous
and compactly supported, so it bounded. Let supp f; C @Q; for some rectangle Q);.
Then,

fi¢ (3.171)
Qi
is a well-defined R. integral. It follows that
[so=[ to (3.172)
U Qi
It follows that

_ 3.173
/Uqb > o (3.173)

This is proved in Munkres.
The second application of partitions of unity involves cut-off functions.
Let f; € C3°(U), i =1,2,3,... be a partition of unity, and let A C U be compact.
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Lemma 3.31. There exists a neighborhood U' of A in U and a number N > 0 such
that AUsupp f; = ¢ for alli > N.

Proof. For any p € A, there exists a neighborhood U, of p and a number N, such
that U’ Usupp f; = ¢ for all i > N,. The collection of all these U, is a cover of A.
By the H-B Theorem, there exists a finite subcover U,,, i = 1,2,3,... of A. Take
U, = UU,, and take N = max{N,,}. O

We use this lemma to prove the following theorem.

Theorem 3.32. Let A C R"™ be compact, and let U be an open set containing A.
There ezists a function f € C(U) such that f = 1 (identically equal to 1) on a
neighborhood U' C U of A.

Proof. Choose U’ and N as in the lemma, and let

F=>_f (3.174)
Then supp f; NU' = ¢ for all i > N. So, on U’,

f= ifi = 1. (3.175)
=1

]

Such an f can be used to create cut-off functions. We look at an application.

Let ¢ : U — R be a continuous function. Define ¢y = f¢. The new function
1 is called a cut-off function, and it is compactly supported with supp ¢ C U. We
can extend the domain of ¢ by defining 1/ = 0 outside of U. The extended function
1 : R™ — R is still continuous, and it equals ¢ on a neighborhood of A.

We look at another application, this time to exhaustion functions.

Definition 3.33. Given an open set U, and a collection of compact subsets A;i =
1,2,3,... of U, the sets A; form an ezhaustion of U if A; C Int A;;; and UA; = U
(this is just a quick reminder of the definition of exhaustion).

Definition 3.34. A function ¢ € C*>(U) is an exhaustion function if
1. ¢ >0,
2. the sets A; = ¢~1([0, 1]) are compact.

Note that this implies that the A}s are an exhaustion.
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We use the fact that we can always find a partition of unity to show that we can
always find exhaustion functions.
Take a partition of unity f; € C*°(U), and define

¢ = izf (3.176)
=1

This sum converges because only finitely many terms are nonzero.
Consider any point

p & | Jsupp f;. (3.177)
J<i
Then,
1= filp)
=1 (3.178)
=Y filp),
k>i
SO
D tflp) =) tfe
/=1 0>i
>, (3.179)
>4

That is, if p ¢ Uj<; supp f;, then f(p) > i. So,
¢~"([0,1]) < | Jsupp £, (3.180)
J<i

which you should check yourself. The compactness of the r.h.s. implies the compact-
ness of the Lh.s.

Now we look at problem number 4 in section 16 of Munkres. Let A be an arbitrary
subset of R”, and let g : A — R¥ be a map.

Definition 3.35. The function ¢ is C¥ on A if for every p € A, there exists a
neighborhood U, of p in R™ and a C* map ¢? : U, — R* such that ¢?|U,NA = ¢g|U,NA.

Theorem 3.36. If g : A — R¥ is C*, then there exists a neighborhood U of A in R"
and a C* map §: U — RF such that § = g on A.

Proof. This is a very nice application of partition of unity. Read Munkres for the
proof. n
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4

4.1

Lecture 16

Multi-linear Algebra

Review of Linear Algebra and Topology

In today’s lecture we review chapters 1 and 2 of Munkres. Our ultimate goal (not
today) is to develop vector calculus in n dimensions (for example, the generalizations
of grad, div, and curl).

Let V be a vector space, and let v; € Vo =1,... k.

1.

10.

The v)s are linearly independent if the map from R¥ to V mapping (cy, ..., cx)
to civr + ... + ¢ is injective.

The vis span V if this map is surjective (onto).

If the v}s form a basis, then dim V' = k.

. A subset W of V is a subspace if it is also a vector space.

Let V and W be vector spaces. A map A : V — W is linear if A(civ1 + covy) =
ClA(Ul) + CQA(UZ).

The kernel of a linear map A:V — W is

ker A={veV:Av =0} (4.1)

The image of A is
Im A={Av:v eV} (4.2)

The following is a basic identity:

dimker A + dimIm A = dim V. (4.3)

. We can associate linear mappings with matrices. Let vq,...,v, be a basis for

V, and let wyq, ..., w,, be a basis for W. Let
AUj = Z QW . (44)
i=1

Then we associate the linear map A with the matrix [a;;]. We write this A ~
[az;].

If vy,...,v, is a basis for V and u; = ) a;;w; are n arbitrary vectors in W,
then there exists a unique linear mapping A : V. — W such that Av; = u;.
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11.
12.

13.

Know all the material in Munkres section f 2 on matrices and determinants.

The quotient space construction. Let V' be a vector space and W a subspace.
Take any v € V. We define v + W = {v 4+ w : w € W}. Sets of this form are
called W-cosets. One can check that given vy + W and vy + W,

(a) If vy —ve € W, then vy + W = vy + W.
(b) If vy —wvy ¢ W, then (vy + W) N (vy + W) = ¢.

So every vector v € V' belongs to a unique W-coset.
The quotient space V//W is the set of all W=cosets.

For example, let V = R? and let W = {(a,0) : @ € R}. The W-cosets are then
vertical lines.

The set V/W is a vector space. It satisfies vector addition: (v;+W)+(ve+W) =
(v1 + vg) + W. Tt also satisfies scaler multiplication: A(v + W) = Av + W. You
should check that the standard axioms for vector spaces are satisfied.

There is a natural projection from V' to V/W:
T V-oV/W v—-v4+W (4.5)

The map 7 is a linear map, it is surjective, and kerm = W. Also, Im 7 = V/W,
SO

dimV/W =dimIm =
=dimV —dimkern (4.6)
=dimV — dim V.

4.2 Dual Space

The dual space construction: Let V' be an n-dimensional vector space. Define
V* to be the set of all linear functions ¢ : V' — R. Note that if ¢;,/5 € V* and
A1, A2 € R, then A\l + \oly € V*, so V* is a vector space.

What does V* look like? Let eq,...,e, be a basis of V. By item (9), there
exists a unique linear map e} € V* such that

er(e;) =1,
et(e;) = 0, if j #1.

Claim. The set of vectors e}, ..., e} is a basis of V*.

Proof. Suppose ¢ = > c;ef = 0. Then 0 = {l(ej) = > cief(ej) = ¢, 50 ¢ =

*

. = ¢, = 0. This proves that the vectors e; are linearly independent. Now,

if £ € V* and {(e;) = c¢; one can check that ¢ = ) ¢;ej. This proves that the

%

vectors e; span V™. ]
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The vectors e, ..., e are said to be a basis of V* dual to eq, ..., e,.
Note that dim V* = dim V.

Suppose that we have a pair of vectors spaces V,WW and a linear map A : V —
W. We get another map
AW =V, (4.7)

defined by A*¢ = ¢ o A, where ¢ € W* is a linear map ¢ : W — R. So A*/ is a
linear map A*¢: V — R. You can check that A* : W* — V* is linear.

We look at the matrix description of A*. Define the following bases:

e,...,e, a basis of V (4.8)
fi,--., fn a basis of W (4.9)
el,...,e, a basis of V* (4.10)
fi,--., f, abasis of W". (4.11)
Then
A fi(ei) = f;(Aei)
= ;) arifs) (4.12)
k
So,
ATfj =) apei, (4.13)
k
which shows that A* ~ [a;;] = [a;;]*, the transpose of A.
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Lecture 17

Today we begin studying the material that is also found in the Multi-linear Algebra
Notes. We begin with the theory of tensors.

4.3 Tensors

Let V be a n-dimensional vector space. We use the following notation.

Notation.
VE=Vx. . xV. (4.14)
k ti
For example,
Vi=V xV, (4.15)
VE=V xV xV. (4.16)

Let T : V¥ — R be a map.

Definition 4.1. The map T is linear in its ith factor if for every sequence v; € V,1 <
Jj <mn,j # i, the function mapping v € V to T'(v1,...,0;i_1,0,Vis1,. .., V) is linear in
.

Definition 4.2. The map 7' is k-linear (or is a k-tensor) if it is linear in all k factors.

Let T1,T, be k-tensors, and let A, Ay € R. Then AT} + \T5 is a k-tensor (it is
linear in all of its factors).
So, the set of all k-tensors is a vector space, denoted by £¥(V), which we sometimes
simply denote by £F.
Consider the special case k = 1. The the set £!(V) is the set of all linear maps
¢:V — R. In other words,
V)=V~ (4.17)
We use the convention that
L(V) =R. (4.18)

Definition 4.3. Let T; € £* i = 1,2, and define k = k; + ky. We define the tensor
product of Ty and T} to be the tensor T} ® Ty : V¥ — R defined by

T1 & Tg(?}l, . ,’Uk) = T1<U1, e >Uk1)T2(Uk:1+17 e ,Uk). (419)

We can conclude that T} ® T, € LF.
We can define more complicated tensor products. For example, let T; € £Fi i =
1,2,3, and define k = ky + ko + k3. Then we have the tensor product

Tl ®T2 ®T3<U17"‘7U]€)

= Tl(’Ui, Ce 7Uk1>T2(Uk1+1; e 7vk1+k2)T3(Uk1+k2+17 . ,Uk). (420)
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Then T3 ® T, ® Ty € LF. Note that we could have simply defined

T1®T2®T3:(T1®T2)®T3

4.21
=T ® (T, ® T3), ( )

where the second equality is the associative law for tensors. There are other laws,
which we list here.
o Associative Law: (71 @ T3) @ T3 = T1 @ (T @ T3).

e Right and Left Distributive Laws: Suppose T; € £F,i = 1,2,3, and assume
that k; = k5. Then

— Left: (T1+T2)®T3 :T1®T3+T2®T3.
- nght T3 (029 (Tl + T2> = T3 X T1 -+ T3 X TQ.
e Let A be a scalar. Then

M eTh) =) T =T ® (\3). (4.22)
Now we look at an important class of k-tensors. Remember that £1(V) = V*,
and take any 1-tensors /; € V*,i=1,... k.
Definition 4.4. The tensor T'= /1 ® - - - ® £}, is a decomposable k-tensor.

By definition, T'(vy, ..., vx) = €1(vy) ... lk(vg). That is, {4 ® -+ @ l(vq, ..., v5) =
£1<U1) . €k(vk).
Now let us go back to considering £F = LF(V).

Theorem 4.5.

dim £* = n*. (4.23)
Note that for k =1, this shows that L'(V) = V* has dimension n.
Proof. Fix a basis ey, ..., e, of V. This defines a dual basis e}, ... ,e; of V* el : V —
R defined by
1 ifi—
€ (e;) = L (4.24)
0 ifi#j.

Definition 4.6. A multi-index I of length k is a set of integers (i1, ..., i), 1 < i, < n.
We define

ef=¢e ® -@e €L" (4.25)
Let J = (j1,...,jkx) be a multi-index of length k. Then
\ . ) 1 if I =J,
6[(63'17 S 7€jk) = eil(ejl) s eik(ejk) = {0 f T 7& J (4'26)
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Claim. The k-tensors €} are a basis of L*.

Proof. To prove the claim, we use the following lemma.

Lemma 4.7. Let T be a k-tensor. Suppose that T(e;,,...,e;,) = 0 for all multi-
indices I. Then T' = 0.

Proof. Define a (k — 1)-tensor T} : V*~! — R by setting
ﬂ(’vl,...,l}k_l) :T(Ul,...,vk_1,€j>, (427)

and let vy = > ase;. By linearity, T'(vy,...,vx) = Y. a;/Ti(v1,...,v5-1). So, if the
lemma is true for the 7;’s, then it is true for 7' by an induction argument (we leave
this to the student to prove). O

With this lemma we can prove the claim.
First we show that the e}’s are linearly independent. Suppose that

0=T=> ce}. (4.28)

For any multi-index J of length £k,
0= T(ejl, e 7€jk)

= Z crer(ej, ..., e5.) (4.29)

:CJ
= 0.

So the e}’s are linearly independent.

Now we show that the e}’s span L£F. Let T € LF. For every I let Ty =
T(ei,...,e;), and let T" = > Trej. One can check that (T'—T1")(e;,, ..., ¢€j,) = 0 for
all multi-indices J. Then the lemma tells us that 7' = T", so the e}’s span £*, which
proves our claim. O

Since the e}’s are a basis of £, we see that
dim £* = n*, (4.30)

which proves our theorem. O]
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4.4 Pullback Operators

Let V,W be vector spacers, and let A : V — W be a linear map. Let T € LF(W),
and define a new map A*T € L*(V) (called the “pullback” tensor) by

A T(vy,...,up) = T(Avy, ..., Avg). (4.31)
You should prove the following claims as an exercise:
Claim. The map A* : L¥(W) — L¥(V) is a linear map.
Claim. Let T; € LFi(W),i =1,2. Then
AT, @ Ty) = AT, ® A*T. (4.32)

Now, let A:V — W and B : W — U be maps, where U is a vector space. Given
T € LF(U), we can “pullback” to W by B*T, and then we can “pullback” to V by
A*(B*T) = (B o A)*T.
4.5 Alternating Tensors

In this course we will be restricting ourselves to alternating tensors.
Definition 4.8. A permutation of order k is a bijective map

o {1, k}—{1,... k). (4.33)

The map is a bijection, so o~ ! exists.

Given two permutations o1, 0y, we can construct the composite permutation
010 09(1) = 01(09(7)). (4.34)

We define
S = The set of all permutations of {1,...,k}. (4.35)

There are some special permutations. Fix 1 <17 < j < k. Let 7 be the permutation
such that

(i) =j (4.36)
7(j) =i (4.37)
T0) = 0,01, ]. (4.38)

The permutation 7 is called a transposition.
Definition 4.9. The permutation 7 is an elementary transposition if 7 =i + 1.

We state without proof two very useful theorems.
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Theorem 4.10. Every permutation can be written as a product 0 = T4 0750+ 0Ty,
where each 7; s an elementary transposition.

Theorem 4.11. Every permutation o can be written either as a product of an even
number of elementary transpositions or as a product of an odd number of elementary
transpositions, but not both.

Because of the second theorem, we can define an important invariant of a permu-
tation: the sign of the permutation.

Definition 4.12. If 0 = 7y 0 --- 0 73,,, where the 7;’s are elementary transpositions,
then the sign of o is
sign of 0 = (—1)7 = (—1)™. (4.39)

Note that if 0 = 01 0 09, then (—1)7 = (—=1)7"(—1)72. We can see this by letting
0] =Ty 00Ty, and 0y =7 0---07, , and noting that oy 00y =1 0--- 07y, ©
/ /
TLO 0T, .
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Lecture 18

We begin with a quick review of permutations (from last lecture).

A permutation of order k is a bijective map o : {1,...,k} — {1,...,k}. We
denote by S, the set of permutations of order k.

The set S, has some nice properties. If ¢ € Sy, then ¢=! € S;. The inverse
permutation o' is defined by 07!(j) =i if o(i) = j. Another nice property is that
if 0,7 € Sk, then o1 € Sy, where o7(i) = o(7(¢)). That is, if 7(i) = j and o(j) = k,
then o7(i) = k.

Take 1 <1 < j <k, and define

(i) =7 (4.40)

The permutation 7, ; is a transposition. It is an elementary transposition of j = i+ 1.
Last time we stated the following theorem.

Theorem 4.13. Fvery permutation o can be written as a product
O=TiTy" " Ty, (4.43)
where the 1;’s are elementary transpositions.

In the above, we removed the symbol o denoting composition of permutations,
but the composition is still implied.
Last time we also defined the sign of a permutation

Definition 4.14. The sign of a permutation o is (—1)? = (—1)", where r is as in the

above theorem.
Theorem 4.15. The above definition of sign is well-defined, and
(—1)7" = (~1)7(=1)". (4.44)

All of the above is discussed in the Multi-linear Algebra Notes.
Part of today’s homework is to show the following two statements:

1. |Sk| = k!. The proof is by induction.
2. (—1)7s = —1. Hint: use induction and 7; ; = (75_1,;)(7ij-1)(7j-1,;), with i < j.

We now move back to the study of tensors. Let V be an n-dimensional vector
space. We define
VF=Vx---xV. (4.45)
—_———

k factors
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We define £*(v) to be the space of all k-linear functions T : V¥ — R. If T; € L£Fi i =
1,2, and k = ky + ko, then T} ® Ty, € L*. Decomposable k-tensors are of the form
T =1/(® - QL where each ¢; € L' = V*. Note that {; @ -+ @ lp(vy,...,v3) =

fl(’Ul) Ce fk(’l}k)
We define a permutation operation on tensors. Take o € Sy, and T' € LF(V).

Definition 4.16. We define the map 77 : V¥ — R by
TU(Ul, oo ,Uk) = T(’Uafl(l), “en ,UU—I(k)). (446)
Clearly, T7 € L*(V). We have the following useful formula:

Claim.
(T =17°. (4.47)

Proof.

TTO(Ul, NP ,Uk) = T(Ug—l(.r—l(l)), .o ,Ugfl(q.fl(k)))
= TJ(UT—1(1), e ,’UT—I(k)) (448)
= (T7) (v1,...,0k).

O

Let us look at what the permutation operation does to a decomposable tensor
T:£1®H'®£k*

TU(Ul, c. ,Uk) = 61(1}0—1(1)) .. .€k<vg—1(k)). (449)

The ith factor has the subscript o 1(:) = j, where o(j) = 4, so the the ith factor is
lo()(v5)- So

4.50
= (EO'(l) X &® Eo’(k))(vla 71)]6) < )
To summarize,
T=0L® QY
4.51
{T":&(n@'“@fo(k)- o

Proposition 4.17. The mapping T € LF — T° € LF is linear.

We leave the proof of this as an exercise.
Definition 4.18. A tensor T' € LK(V) is alternating if T° = (—1)°T for all o € S.
Definition 4.19. We define

AF(V) = the set of all alternating k-tensors. (4.52)
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By our previous claim, A* is a vector space.
The alternating operator Alt can be used to create alternating tensors.

Definition 4.20. Given a k-tensor T' € L¥(V), we define the alternating operator
Alt - L¥(V) — AR(V) by

Al (T) =) " (-10)T". (4.53)

TESE
Claim. The alternating operator has the following properties:

1. Alt(T) € A¥(V),

2. If T € AK(V), then Alt (T) = K!T,

3. Alt (T7) = (—1)7 Alt (T),

4. The map Alt : LK(V) — AR(V) is linear.

Proof. 1.
Alt(T) =) (-1)T7, (4.54)
Ale(T)7 =) (=) (T7)°
— _1 TTO'T
Z( ) (4.55)
= (=1)7 Y (-1)7TT"
= (—=1)7 Alt (7).
2.
Alt(T) =) (-1)T7, (4.56)

T

but T7 = (—=1)"T, since T € A*(V). So

AlG(T) = S (1) (1) T
(T) 2( ) (=1) e
— KT,

Al (T7) =) (=1)(T°)

= (4.58)



4. We leave the proof as an exercise.
m

Now we ask ourselves: what is the dimension of A*(V)? To answer this, it is best
to write a basis.

Earlier we found a basis for £F. We defined e, ..., e, to be a basis of V and
e;,...,e: to be a basis of V*. We then considered multi-indices I = (iy,...,4),1 <
ir < n and defined {ej = e} ®--- ® e}, I amulti-index} to be a basis of £*. For

any multi-index J = (ji, ..., jx), we had

1 iftlr=J
er(ei,...,e; )= ’ 4.59
Definition 4.21. A multi-index I = (iy, ..., 1) is repeating if i, = is for some r < s.

Definition 4.22. The multi-index I is strictly increasing if 1 < iy < ... < i < n.
Notation. Given o € Sy, and I = (iy,...,14), we denote I7 = (i51), .- -, lo(k))-

Remark. If J is a non-repeating multi-index, then there exists a permutation ¢ such
that J = 7, where [ is strictly increasing.

€y =€l =iy @ @ey, = (e])”. (4.60)
Define ¢; = Alt (e}).
Theorem 4.23. 1. ;o = (—1)7¢y,
2. If I is repeating, then ¢y = 0,

3. If I,J are strictly increasing, then

1 afr=4J,
w1<€j17"‘76jk) = {O Zf[;é J (461)
Proof. 1.
w]c = Alt 6?0
= Alt ((e7)”)
= (—1)7 Alt e} (4.62)
= (=1)%r.

2. Suppose that [ is repeating. Then I = I” for some transposition 7. So ¢; =
(—1)7¢;. But (as you proved in the homework) (—1)" = —1, so ¢; = 0.

74



=) (=1)7e, (4.63)
SO
Urles,ne) = > (1) e (e, e5) (4.64)
’ 1T =,
0 if I7 #J.

But I” = J only if 7 is the identity permutation (because both I and J are
strictly increasing). The only non-zero term in the sum is when 7 is the identity
permutation, so

1 if I =J,

0 ifI#J. (4.65)

¢I(ejl7"'7€jk) = {
]

Corollary 5. The alternating k-tensors 1y, where I is strictly increasing, are a basis

of AM(V).
Proof. Take T' € A¥(V). The tensor T can be expanded as T = Y cje}. So

Al (T) = k1> ey Alt (e})

= k! Z C[¢].

If I is repeating, then ¢; = 0. If I is non-repeating, then [ = J?, where J is strictly
increasing. Then ¢y = (—1)7%;.
So, we can replace all multi-indices in the sum by strictly increasing multi-indices,

(4.66)

T = Z aryyr, I’s strictly increasing. (4.67)

Therefore, the 1;’s span A¥(V'). Moreover, the ;s are a basis if and only if the a;’s
are unique. We show that the a;’s are unique.
Let J be any strictly increasing multi-index. Then

T(ej,..- €)= Zal¢<€j17 s €5)

=ay,

(4.68)

by property (3) of the previous theorem. Therefore, the ;’s are a basis of A*(V). O
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Lecture 19

We begin with a review of tensors and alternating tensors.

We defined £¥(V) to be the set of k-linear maps 7' : V¥ — R. We defined
e1,...,e, to be a basis of V and e],...,e;, to be a basis of V*. We also defined
{ej = €5, ®---®e; } to be a basis of LX(V), where I = (iy,...,4), 1 <i, <nisa
multi-index. This showed that dim £* = n*.

We defined the permutation operation on a tensor. For ¢ € S,, and T € LF, we
defined T7 € L* by T7(v1,...,vx) = T(vs-101), ..., Vo-1()). Then we defined that
T is alternating if T° = (—1)°T. We defined A* = A*(V) to be the space of all
alternating k-tensors.

We defined the alternating operator Alt : £¥ — A* by Alt (T) = Y (—1)°T7, and
we defined ¢; = Alt (e}), where I = (i,...,14) is a strictly increasing multi-index.
We proved the following theorem:

Theorem 4.24. The ;s (where I is strictly increasing) are a basis for A¥(V).

Corollary 6. If 0 < k <n, then

|
dim A* = (Z) S—— (4.69)

Corollary 7. If k > n, then A* = {0}.

We now ask what is the kernel of Alt? That is, for which 7' € £* is Alt (T') = 0?
Let T € L£F be a decomposable k-tensor, T = {1 ® - - - @ {},, where each ¢; € V*.

Definition 4.25. The k-tensor T' is redundant if ¢; = ¢;1 for some 1 <1 < k — 1.

We define
7% = Span { redundant k-tensors }. (4.70)

Claim. If T € T*, then Alt (T) = 0.

Proof. 1t suffices to prove this for T'={; ® - - - ® l,, where ¢; = {;11 (T is redundant).
Let 7 = Tii+1 € Sk SO, T =T. But

ALt (T7) = (—1)" Alt (7))

= — Alt(T), (4.71)

so Alt (T') = 0. O
Claim. Suppose that T € IF and T' € L™. Then T' QT € ITF" and TQ T' € ITF™.
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Proof. We can assume that T and 7" are both decomposable tensors.

T:€1®®€k, gz :£i+17 (472)
T'=0® -, (4.73)
TRT =6Q-® L; @iy @ QUK ® -4, (4.74)
——
a redundancy
c I+, (4.75)
A similar argument holds for 7" ® T'. O

Claim. For each T € LF and o € Sy, there exists some w € IF such that
T=(-1)T"+W. (4.76)

Proof. In proving this we can assume that 7T is decomposable. Thatis, T =/, ®---®
.

We first check the case k = 2. Let T'= ¢; ® {. The only (non-identity) permuta-
tion is o0 = 7y 5. In this case, T' = (—1)°T7 + W becomes W =T+ 717, so

W=T+1T°
=0 QR ly+ly ® ¥
=l +0)R W+ l) =l @0 —ly® U
c1°

(4.77)

We now check the case k is arbitrary. Let T'= 1 ®---®/{, and 0 = 175 ... 7, € Sk,
where the 7;’s are elementary transpositions. We will prove that W € Z* by induction
on 7.

e Case r =1: Then 0 = 7,41, and

W=T+T°
=L@ @)+ (L@ @)
=0 QR L 1® (U @i+l 1 QL) @it ® - Ry,
AR

(4.78)

because (; ® li1 + b @ 4;) € TF.

e Induction step ((r — 1) = r): Let f§ = 7»...7,, and let 7 = 7y so that
oc=mnTy... 7, = 7. Then

T° = (T°)". (4.79)

By induction, we know that

T = (=1)°T + W, (4.80)
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for some W € I*. So,

T° = (-1)°T" + W7
(=) (=1)"T+ W~ (4.81)
()T +WT,

where W7 = (=1)"W + W' € I*.

O
Corollary 8. For every T € LF,
AlW(T)=KIT+W (4.82)
for some W € I*.
Proof.
Al (T) =) (-1)7T7, (4.83)
but we know that 7% = (—1)°T + W, for some W, € Z*, so
AlL(T) =) (T + (=1)°W,,)
o (4.84)
=kIT+W,
where W =Y _(—1)°W, € I*. O
Theorem 4.26. Every T € LF can be written uniquely as a sum
T =T + T, (4.85)

where Ty € A* and T, € IF.
Proof. We know that Alt (T) = k!T + W, for some W € Z*. Solving for T, we get

1 1
—_—— =
T T
We check uniqueness:
Alt (T') = Alt (T1) + Alt (Ty), (4.87)
—— N —
kT 0
so T} is unique, which implies that T5 is also unique. O
Claim.
TF = ker Alt . (4.88)
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Proof. Tf Alt T =0, then
1

k!
so T € T*. m

T W, W eIt (4.89)

The space Z* is a subspace of £, so we can form the quotient space
AR (VY = gk jTh, (4.90)

What’s up with this notation A¥(V*)? We motivate this notation with the case k = 1.
There are no redundant 1-tensors, so Z' = {0}, and we already know that £! = V*.
So

ANV =V )Tt =L =V (4.91)

Define the map 7 : £L¥ — £F/T%. The map 7 is onto, and ker 7 = Z*.
Claim. The map 7 maps A* bijectively onto A¥(V*).

Proof. Every element of A* is of the form 7(T) for some T € L£F. We can write
T =T, + Ty, where T} € A* and Ty € Z*. So,

m(T1) + m(13)

So, m maps A* onto A¥. Now we show that 7 is one-to-one. If T' € A* and #(T) = 0,
then T' € Z* as well. We know that A* N Z% = {0}, so  is bijective. O

We have shown that
AF(V) = AR (V). (4.93)

The space A*(V*) is not mentioned in Munkres, but sometimes it is useful to look at
the same space in two different ways.
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Lecture 20

We begin with a review of last lecture.

Consider a vector space V. A tensor T € LF is decomposable if T = {1 ® --- ®
lw, U; € LY = V*. A decomposable tensor T is redundant of ¢; = ;1 for some i. We
define

7% = 7%(V') = Span { redundant k-tensors }. (4.94)
Because ZF C £*, we can take the quotient space
AP = ARV = £F)TF, (4.95)
defining the map
7 L — AR, (4.96)

We denote by A*(V) the set of all alternating k-tensors. We repeat the main theorem
from last lecture:

Theorem 4.27. The map © maps A* bijectively onto A¥. So, A* = A¥,

It is easier to understand the space A*, but many theorems are much simpler
when using A*. This ends the review of last lecture.

4.6 Wedge Product

Now, let T} € Z% and Ty € £*?. Then T} ®T, and To,®T; are in ZF, where k = ki + k.
The following is an example of the usefulness of A*.

Let p; € A%, i =1,2. So, u; = 7(T;) for some T; € L¥. Define k = ky + ky, so
T, @ Ty, € LF. Then, we define

T(Ty ® Ty) = iy A g € A*. (4.97)
Claim. The product p; A ps is well-defined.
Proof. Take any tensors T/ € LFi with w(T}) = u;. We check that

We can write
T, = Ty + Wi, where W, € T, (4.99)
Ty = Ty + Ws, where W, € T2, (4.100)
Then,
NeTh=TioT,+Wi@T,+T) @ Wy + W, @ W, (4.101)
ez
SO
A = (T © Ty) = 7(Ty ® T). (4.102)
O
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This product (A) is called the wedge product. We can define higher order wedge
products. Given yu; € A%, i =1,2 3, where u = 7(T;), we define

1251 VAN j2%) AN M3 = 7T(T1 X T2 X Tg) (4103)

We leave as an exercise to show the following claim.

Claim.
N o N = A A
i A g A s = (1 A o) A i (4.104)
= pa A (2 A pis).
Proof Hint: This triple product law also holds for the tensor product. O
We leave as an exercise to show that the two distributive laws hold:

Claim. If ky = ko, then

(1 + p2) A pg = pa A pis + po A pis. (4.105)
]f k‘Q = /{33, then

i A (pio + p13) = p A o + pa A pis. (4.106)

Remember that Z' = {0}, so A' = A'/Z' = £} = £YV) = V*. That is,
AN (V) =V

Definition 4.28. The element p € AF is decomposable if it is of the form pu =
0y A -+~ AL, where each ¢; € A = V*,

That means that y = 7(¢; ®- - - ® ¥y ) is the projection of a decomposable k-tensor.
Take a permutation o € S, and an element w € A* such that w = 7(T), where
T e LF.

Definition 4.29.
w? =m(T7). (4.107)

We need to check that this definition does not depend on the choice of T
Claim. Define w? = w(T7). Then,
1. The above definition does not depend on the choice of T,
2. w? = (-1)w.
Proof. 1. Last lecture we proved that for T' € LF,
T7 = (=1)°T + W, (4.108)
for some W € Z*. Hence, if T € Z*, then T° € IF. If w = 7(T) = 7(1"), then
T'—T € I". Thus, (T")° —T° € IF, so w? = 7((T")°) = =(T°).
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T° = (=1)°T + W, (4.109)
for some W € T¥, so
©(T°) = (=1)°x(T). (4.110)
That is,
w? = (—1)w. (4.111)
O

Suppose w is decomposable, so w = (1 A+ Aly, {; € V. Thenw = w({ A+ Aly),
SO

W =m(((L® - @ L))
= T(le) ® - @ o)) (4.112)
= gg(l) VANRIERIAY fo(k).

Using the previous claim,
60(1) VANRRRIVAY Eg(k) = (—1)061 Ao ANl (4.113)

For example, if £ = 2, then 0 = 7 9. So, lo AN ¢y = —{; A ly. In the case k = 3, we
find that

(61 /\62) /\€3 = 61 A <£2 /\63)
= —ly A (Uy N ly) = —(ly Nls) ALy (4.114)
- 63 A (51 VAN 62)

This motivates the following claim, the proof of which we leave as an exercise.

Claim. If u € A* and { € A', then
wALl=10NAp. (4.115)
Proof Hint: Write out u as a linear combination of decomposable elements of A2, [

Now, suppose k = 4. Moving /3 and ¢, the same distance, we find that
The proof of the following is an exercise.

Claim. If u € A* and v € A?, then
PAV=VApN. (4.117)

We generalize the above claims in the following:
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Claim. Left p € AF and v € A*. Then
pAv=(=1DFvAp. (4.118)

Proof Hint: First assume k is even, and write out p as a product of elements all of
degree two. Second, assume that k is odd. O

Now we try to find a basis for A¥(V*). We begin with

€1,...,€e, a basis of V, (4.119)
e;,...,er abasis of V", (4.120)
ef=e ® --@e, [=(i,... i), 1 <i, <n, abasis of L, (4.121)
Y = Alt (e}), I’s strictly increasing, a basis of A*(V). (4.122)

We know that m maps A* bijectively onto A*, so 7(1;), where I is strictly increasing,
are a basis of A*(V*).

Yr=Altej = (=1)7(e})". (4.123)
So,

(
=S (1) (~1)7(e)) (4.124)
(

Theorem 4.30. The elements of A*(V*)

ENNEL, 1< <...<ip<n (4.125)

are a basis of A*(V*).
Proof. The proof is above. O]

Let V,W be vector spaces, and let A : V' — W be a linear map. We previously
defined the pullback operator A* : LE(W) — LF(V). Also, given T; € LF(W),i =
1,2, we showed that A*(T) @ Ty) = A1 @ A*T5. So, f T =0, Q- @4, € L (W) is
decomposable, then

AT =A"® - A, ;e W*. (4.126)
If ¢; = ¢; 1, then A*(; = A*(;;1. This shows that if /; ® - -+ ® ¢, is redundant, then
A*(ly ® -+ - ® ly) is also redundant. So,

ATHW) C TH(V). (4.127)

Let p € A*(W*), so u = w(T) for some T € LF¥(W). We can pullback to get
m(A*T) € Ak(V*).
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Definition 4.31. A*u = n(A*T).

This definition makes sense. If y = 7(T) = #(T"), then T/ — T € ZF(W). So
A*T" — A*T € I%(V'), which shows that A*p = 7(A*T") = 7(A*T).

We ask in the homework for you to show that the pullback operation is linear and
that
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Lecture 21

Let V, W be vector spaces, and let A : V' — W be a linear map. We defined the
pullback operation A* : W* — V*. Last time we defined another pullback operator
having the form A* : A¥(W*) — A¥(V*). This new pullback operator has the following
properties:

1. A* is linear.
2. If w; € AM(W*), i = 1,2, then A*w; Awy = A*w; A ws.

3. If w is decomposable, that is if w = 1 A --- A £, where {; € W*, then A*w =
AN NA.

4. Suppose that U is a vector space and that B : W — U is a linear map. Then,
for every w € A¥(U*), A*B*w = (BA)*w.

4.7 Determinant

Today we focus on the pullback operation in the special case where dimV = n. So,
we are studying A"(V*), which is called the nth exterior power of V.

Note that dim A™(V*) = 1.

Given a linear map A : V — V., what is the pullback operator

AL AV — AM(VH)? (4.129)

Since it is a linear map from a one dimensional vector space to a one dimensional
vector space, the pullback operator A* is simply multiplication by some constant A 4.
That is, for all w € A™(V*), A*w = A w.

Definition 4.32. The determinant of A is
det(A) = Aa. (4.130)
The determinant has the following properties:
1. If A =1 is the identity map, then det(A) = det(I) = 1.

2. If A, B are linear maps of V' into V, then det(AB) = det(A) det(B).
Proof: Let w € A"(V*). Then

(AB)*w = det(AB)w
= B*(A"w)
= B*(det A)w
= det(A) det(B)w.

(4.131)
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3. If A is onto, then det(A) # 0.

Proof: Suppose that A : V — V is onto. Then there exists an inverse linear
map A~ : V — V such that AA™! = I. So, det(A4)det(A™!) = 1.

4. If A is not onto, then det(A) = 0.

Proof: Let W = Im (A). If Aisnot onto, then dimW < dimV. Let B:V — W
be the map A regarded as a map of V into W, and let tyy : W — V be
inclusion. So, A = yB. For all w € A"(V*), A*w = B*/j,w. Note that
tiyw € A"(W*) = {0} because dim W < n. So, A*w = B*i};, = 0, which shows
that det(A) = 0.

Let W,V be n-dimensional vector spaces, and let A : V' — W be a linear map.
We have the bases

€1,...,6, basis of V, (4.132)
e}, ..., er dual basis of V¥, (4.133)
fi,..., fn basis of W, (4.134)
fi,-.., [r dual basis of W*. (4.135)

We can write Ae; = ) a;;f;, so that A has the associated matrix A ~ [a;;]. Then
A*fr =3 ajpe;. Takew = fIA---Afr € A"(W*), which is a basis vector of A™(W*

Let us compute its pullback:
(Z al,klezl> ANEIRIVAN (Z amknezn)

k1=1 kn=1

~—

AYfTN- N )
(4.136)
= Z (A1) - Gk, €5, AN N

Note that if k, = k,, where r # s, then e; A---Aej; = 0. If there are no repetitions,
then there exists o € S, such that k; = o(¢). Thus,

A* (fl* A A f:;) = Z aLo-(l) . anp-(n)e:.(l) FANRRIAN €:.<n)

(4.137)
= (Z(_1>0a1,0(1) s an,o(n)) 6? JANCIEVAN 6;.

Therefore,
detfa;] =Y (=1)7a1,00) - - - Gno(m)- (4.138)

g

*
n?

In the case where W =V and each e¢; = f;, weset w =eJ A---Ae
A*w = det[a;;]lw. So, det(A) = det]a,;].

For basic facts about determinants, see Munkres section 2. We will use these
results quite a lot in future lectures. We list some of the basic results below.

Let A = [a;;] be an n x n matrix.

and we get
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1. det(A) = det(A"). You should prove this as an exercise. You should explain the
following steps:

det(A) = Z(_l)aal,a(l) <+ Opo(n)

= Z<_1)TGT(1),1 - Qr(n)n, Where 7 = o ! (4.139)
= det(A").
2. Let
A=[§ g} (4.140)

where Bis k x k, C'isk x (¢, D is{ x ¢, and n = k 4+ ¢. Then
det(A) = det(B) det(D) (4.141)

4.8 Orientations of Vector Spaces

Let £ C R? be a line through the origin. Then £— {0} has two connected components.
An orientation of ¢ is a choice of one of these components.

More generally, given a one-dimensional vector space IL, the set I has two con-
nected components. Choose v € L — {0}. Then the two components are

{Aw:AeR;}and {—M:Ae R} (4.142)

Definition 4.33. An orientation of L is a choice of one of these components, usually
labeled IL,. We define

v e, <= vis positively oriented. (4.143)

Let V' be an n-dimensional vector space. Then A™(V*) is a 1-dimensional vector
space.

Definition 4.34. An orientation of V is an orientation of A™(V*). That is, a choice
of A”(V*)+

Suppose eq,...,e, is a basis of V, so e],...,e; is the dual basis of V*. Let
w=ejN---Ne; e A"(V*) —{0}.

Definition 4.35. The basis ey, ..., e, is positively oriented if w € A™(V*) .

Let fi,..., f, be another basis of V and f/,..., f its dual basis. Let w' =
fi AN fr. We ask: How is ' related to w? The answer: If f; = > a;je;, then
W' = det[a;;Jw. So, if ey,...,e, is positively oriented, then fi,..., f, is positively
oriented if and only if det|a;;] > 0.

Suppose V' is an n-dimensional vector space and that W is a k-dimensional sub-
space of V.
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Claim. If V and V/W are given orientations, then W acquires from these orienta-
tions a natural subspace orientation.

Idea of proof: Let m: V — V/W be the canonical map, and choose a basis ey, ..., e,
of V such that esy1, ..., e, is a basis of W and such that 7(e;),...,m(es) is a basis of
V/W, where { =n — k.

Replacing e; by —e; if necessary, we can assume that 7(e1), ..., 7m(e,) is an oriented
basis of V/W. Replacing e,, by —e, if necessary, we can assume that ey, ..., e, is an
oriented basis of V. Now, give W the orientation for which ey, 1, ..., e, is an oriented
basis of W. One should check that this choice of orientation for W is independent of
the choice of basis (this is explained in the Multi-linear Algebra notes). O
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Lecture 22

In R? we had the operators grad, div, and curl. What are the analogues in R™?
Answering this question is the goal of today’s lecture.

4.9 Tangent Spaces and k-forms
Let p € R™.

Definition 4.36. The tangent space of p in R™ is
T,R" ={(p,v) : v e R"}. (4.144)
We identify the tangent space with R" via the identification

T,R" = R" (4.145)
(p,v) — . (4.146)
Via this identification, the vector space structure on R™ gives a vector space structure
on T,R".
Let U be an open set in R”, and let f : U — R™ be a C! map. Also, let p € U
and define ¢ = f(p). We define a linear map
df, : T,R" — T,R™ (4.147)
according to the following diagram:
TR T, TR

%l 4 (4.148)

R™ Df(p) R™.
So,
dfp(p,v) = (¢, Df(p)v). (4.149)

Definition 4.37. The cotangent space of R™ at p is the space
T'R" = (T,R")", (4.150)
which is the dual of the tangent space of R™ at p.

Definition 4.38. Let U be an open subset of R". A k-form on U is a function w
which assigns to every point p € U an element w, of A*(TR") (the kth exterior power
of T*R™).

p
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Let us look at a simple example. Let f € C*(U), p € U, and ¢ = f(p). The map
df, : T,R" - T.R=R (4.151)

is a linear map of T,R" into R. That is, df, € T;R™. So, df is the one-form on U
which assigns to every p € U the linear map

df, € T;R" = A (T;R). (4.152)
As a second example, let f, g € C*°(U). Then gdf is the one-form that maps
p €U — g(p)df, € A'(T;R™). (4.153)
As a third example, let f,g € C*°(U). Then w = df A dg is the two-form that maps
p e U — df, Ndg,. (4.154)

Note that dfy, dg, € TR, so df, A dg, € A*(TR").
As a fourth and final example, let fi,..., fr € C*°(U). Then df; A --- A dfy is the
k-form that maps

pE U— (dfl)p A A (dfk>p (4155)
Note that each (df;), € T;R", so (df1), A--- A (dfy), € A*(TFR").

Let us now look at what k-forms look like in coordinates. Let eq,...,d, be the
standard basis of R". Let p € U and let v; = (p,e;) for each i. Then, the vectors
v1,...,0, are a basis of T,R".

Suppose we have a map f € C>°(U). What is df,(v;)?

of
Byl0) = Decf () = 32-(p). (1.156)

In particular, letting x; be the ¢th coordinate function,

e, (1 ifiei.
(dzi)p(v;) = a—j = {o ; z 4 j (4.157)
So, (dx1)y, ..., (dv,), is the basis of TXR™ dual to vy, ..., v,.
For any f € C>*(U),
0
Byle) = L)
of
= (p)(dz;) ) (v5)
<Z Oz; ’ (4.158)
— &= ),
0
= df =) a—jd ;



Since (dwy)y, - - ., (dry,), is a basis of T)R", the wedge products
(dxp)p, = (daiy)p A AN (dxy,)p, 1 <13 <---<i <n, (4.159)

(I strictly increasing) are a basis of AF(T*R™).
Therefore, any element w, of A*(T7R"™) can be written uniquely as a sum

Wy = Z ar(p)(dzr),, ar(p) € R, (4.160)

where the I’s are strictly increasing. Hence, any k-form can be written uniquely as a

sum
w= Z ardry, I strictly increasing, (4.161)

where each aj is a real-valued function on U. That is, a; : U — R.
Definition 4.39. The k-form w is C"(U) if each a; € C"(U).

Just to simplify our discussion, from now on we will always take k-forms that are

C*.
Definition 4.40. We define
QF(U) = the set of all C* k-forms. (4.162)

So, w € QF(U) implies that w = Y aydx;, where a; € C*(U).
Let us now study some basic operations on k-forms.

1. Let w € Q¥U) and let f € C®(U). Then fw € QF(U) is the k-form that maps

peU — f(p)w, € N*(T)R™). (4.163)

2. Let w; € QF(U), i = 1,2. Then w; + wy is the k-form that maps

pEU — (wi)p + (w2), € AMTIR™). (4.164)

3. Let w; € Q% (U), i = 1,2, and k = ky + ky. Then w; Awy € QF(U) is the k-form
that maps
pEU = (wi)p A (wa), € A¥(TIR™), (4.165)

since (w;), € A% (TYR™).

Definition 4.41. We find it convenient to define A°(T;R") = R.
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A zero-form f on U is just a real-valued function, so Q°(U) = C®(R).
Take f € C>°(U) and df € Q'(U). This gives an operation

d: Q°U) — QYU), (4.166)
f— df. (4.167)
Let f,g € C*(U) (that is, take f, g to be zero-forms). Then d(fg) = gdf + fdg. We

can think of this operation as a slightly different notation for the gradient operation.
The maps d : Q¥(U) — Q¥YU), k = 0,...,(n — 1) give n vector calculus
operations.
If w € Q%(U), then w can be written uniquely as the sum

w= Z ardzy, I strictly increasing, (4.168)
where each a; € C*°(U). We define
dw=">"day Ada;. (4.169)
This operator is the unique operator with the following properties:
1. For k = 0, this is the operation we already defined, df =) %dxi.
2. If w € QF, then d(dw) = 0.
3. If w; € QF(U),i = 1,2, then d(wy A wy) = dwy A ws + (—1)F1w; A dw,.
Let a € C*(U), and adx; € QF(U), I strictly increasing. Then
d(adxy) = da A dzy. (4.170)
Suppose that I is not strictly increasing. Then

drr = day, A+ Adzg
= A (4.171)
=0 if 2, = i,.

If there are no repetitions, then there exists ¢ € Sy such that J = [ is strictly
increasing. Then
dLIZ'J = (—1)0d$1, (4172)

SO
d(adzy) = (=1)7d(adz )
= (=1)%da N dz, (4.173)
= da N dxj.

Putting this altogether, for every multi-index I of length k,
d(adzy) = da N dx;. (4.174)

92



Lecture 23

Let U be an open set in R™. For each k = 0,...,n — 1, we define the differential
operator
d: Q"U) — QFYU). (4.175)

These maps are the n basic vector calculus operations in n-dimensional calculus. We
review how d is defined.

For k = 0, Q°(U) = C>*(U). Let f € C®(U), and let ¢ = f(p), where p € U.
The mapping df, : T,R" — T.R = R maps T,R" to R, so df, € T;R". The map
df € Q'(U) is a one-form that maps p € U to df, € T/R". A formula for this in
coordinates is

$ af
In k£ dimensions, d is a map

d: Q"U) — QFYU). (4.177)

Given w € Q%(U), w can be written uniquely as

w = Zaldml

! (4.178)
= Zafda:il A Ndx,,
I

where i1 < - -+ < 7, and each a; € C*°(U). Then, we define

dw = Zda; A dxg
i

a—xldl'l VAN dZL’],

where each [ is strictly increasing.
The following are some basic properties of the differential operator d:

L. If p € Q¥(U) and v € QY(U), then

dunv=duAv+(=1)FuAdv. (4.180)

2. For and w € Q*(U),
d(dw) = 0. (4.181)

Remark. Let I be any multi-index, and let a; € C*(U). Then

d(a[dl'[) = da; VAN dl’[. (4182)
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We now prove the above two basic properties of the differential operator.

Claim. If u € Q*(U) and v € QY(U), then
dunv=duNv+ (—=1)"uAdv. (4.183)

Proof. Take pn =Y a;dx; and v =Y bydz;, where I, J are strictly increasing. Then

/.L/\I/:ZG/[bJ der Ndzy . (4.184)
no longer increasing
Then
arb
dpnv)=>" af L dw; A dxy A day
i,1,J
0
:Z 4 '/\d%[/\d.’L‘J (I) (4185)

/\de/\de7 (II)

We calculate sums (/) and (I7) separately.

(I) = g‘” dx; A dzy Abydzy

T
iIJ ot

4.186
_ ( da da; A d:c;) NS byday (4.186)
i, J

7 axz
=du A v.

b
(1) = Z al%dm Adzy A day

i

kZafde/\ dxz/\de

iT,J (4.187)
= (—1)F (Z aldxl) A Z %dxz Adzy
= (=1)*uAdv.

So,

A Av) = (I) + (IT)

4.188
=duAv+(=1)FuAdv ( )
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Claim. For and w € QF(U),

d(dw) = 0. (4.189)
Proof. Let w =) ardxy, so
dw =Y 99 4o p da (4.190)
‘ am] 7 I- .
g1
Then,
820,[
d(dw) = dx; \Ndxj \dzy. (4.191)
57 x0T

Note that if ¢« = j, then there is a repeated term in the wedge product, so

0%a
d(dw) =" 5 a;j dz; A dx; A d; (4.192)
i<j t
82a1
+ ZE . Mdl’l A dl’j Adxg. (4.193)

Note that dz; A dx; = —dx; A dz;. We relabel the second summand to obtain

d(dw) =" Oar - 001 g A da
N 833183:] 0%83:1 ! J ! (4194)

1<J

0
=0.

]

Definition 4.42. A k-form w € QF(U) is decomposable if w = py A -+ A py,, where
each u; € QY(U).

Theorem 4.43. If w is decomposable, then

k
dw = (=1 A Aoy Adps A gy A A g (4.195)

=1

Proof. The proof is by induction.
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The case k = 1 is obvious. We show that if the theorem is true for k£ — 1, then the
theorem is true for k.

d((pa Ao AN ) A ) = (d(pa Ao A 1)) A g

(=D (A A ) A dpg
-1
(=1 M A Adpg A A et A g

e

(4.196)

@
Il
-

(=D M A A gy A )

(=1 A Adpg N A g

Elﬁ* +

@
I
-

4.10 Pullback Operation on Exterior Forms

Another important operation in the theory of exterior forms is the pullback operator.
This operation is not introduced in 18.01 or 18.02, because vector calculus in not
usually taught rigorously.

Let U be open in R™ and V' be open in R™, and let f : U — V be a C* map.
We can write out in components f = (fi,..., f,), where each f; € C*(U). Let p € U

and ¢ = f(p).
The pullback of the map df,, : T,R™ — T,;R" is

(df,)* : AF(TZR™) — AF(TR™). (4.197)

Suppose you have a k-form w on V.

w e QN V), (4.198)
wg € A*(TR™). (4.199)

Then
(df,)*wq € A*(T;R™). (4.200)

Definition 4.44. f*w is the k-from whose value at p € U is (df,)*w,.

We consider two examples. Suppose ¢ € Q°(V) = C>®(V). Then f*¢(p) = é(q),
so f*¢=¢o f,where f:U —V and ¢: V — R.

Again, suppose that ¢ € Q°(V) = C>(V). What is f*d¢? Let f(p) = ¢. We have
the map d¢, : T,R" — T.R = R, where ¢ = ¢(q). So,

(dfp)*(dg)q = dog o df,

_ d(éo f),. (4.201)
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Therefore,
frde = df*é. (4.202)
Suppose that g € Q¥(V) and v € Q°lI(V). Then

([ Av))p = (dfp) (g A vy)

= () A )t (4.208)

Hence,
frlunv)=funf (4.204)

We now obtain a coordinate formula for f*.
Take w € QF(V). We can write w = Y ardz;, A+ - - Adx;,, where each a; € C(U).
Then

o= fafde, A A fdx,
=" fragdfi, A+ Adfy,,

where we used the result that f*dx; = dx; o f = df;.
Note that df; = gf;ﬁ_dzj, where % € C®(U). Also, ffar = ajo f € C=*(U),
which shows that

(4.205)

frw e QFU). (4.206)
The following theorem states a very useful property of the pullback operator.

Theorem 4.45. Let w € QF(V). Then,
df*w = f*dw. (4.207)

Proof. We have already checked this for w = ¢ € C*(V), k = 0 already. We now
prove the general case.
We can write w = > aydx;. Then

frw=>Y" fagdfy A---Ndfi,. (4.208)
So,
R (4.200)
+ 3 frap Ad(dfi, A Ndf,)
Note that
k
d(dfs, N+~ Ndfi) =Y (=1 Ndfi, Ao Ad(dfi) A Adf, (4.210)

r=1

97



We know that d(df;.) = 0, so
dffw =" df*a; Ndf;, A--- Ndf;,
I
;f ar A f*(dz Zi,) (4.211)

= f*(z dCL[ VAN de’])
= ffdw.
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Lecture 24

We review the pullback operation from last lecture. Let U be open in R™ and let
V be open in R™. Let f: U — V be a C* map, and let f(p) = ¢q. From the map

df, : T,R™ — T,R", (4.212)
we obtain the pullback map
(dfy)™ : AM(Ty) — AN(T})

L . (4.213)
we (V) — ffweQ¥U).
We define, f*w, = (df,)*w,, when w, € A*(T).
The pullback operation has some useful properties:
1. Ifw; € Q%(V),i=1,2, then
f*(wl A u)2> == f*w1 VAN f*u)g. (4214)
2. If w € QF(V), then
df*w = f*dw. (4.215)
We prove some other useful properties of the pullback operation.
Claim. For all w € QF(W),
ffgw=(go f)w. (4.216)
Proof. Let f(p) = q and g(q) = w. We have the pullback maps
(df,)" :AM(T) — AM(T) (4.217)
(dge)* :A¥(T) — AM(T) (4.218)
(go ) AMTy) — AM(TY). (4.219)
The chain rule says that
(dg o f)p = (dg)q o (df)y, (4.220)
SO
d(g o f); = (dfp)*(dgq)*' (4.221)
O

Let U,V be open sets in R, and let f : U — V be a C>* map. We consider the
pullback operation on n-forms w € Q*(V). Let f(0) = g. Then

(dzi)p, i=1,...,n, isabasisof T, and (4.222)
(dzi)g, i=1,...,n, Iisa basis of T}. (4.223)
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Using f; = i 0 f,

(dfp)"(dxi)q = (dfi)p

f; (4.224)
In the Multi-linear Algebra notes, we show that
(dfy)*(dz1)g A -+ A (dxy,)q = det B (p)| (dz1)p A -+ A (dxy)p. (4.225)
J
So,
frdxy A+ Ndx, = det dry A - Ndxy,. (4.226)
aﬂfj
Given w = ¢(x)dxy A - -+ A dx,, where ¢ € C™,
ffw=o(f(x))det pe dxy N\ -+ Ndx,. (4.227)
J
5 Integration with Differential Forms
Let U be an open set in R”, and let w € Q*(U) be a differential k-form.
Definition 5.1. The support of w is
supp w ={p € U : w, # 0}. (5.1)

Definition 5.2. The k-form w is compactly supported if supp w is compact. We define
QF(U) = the space of all compactly supported k-forms. (5.2)

Note that
Q(U) = C°(R™). (5.3)

Given w € Q*(U), we can write
w=¢(x)dxy A--- Ndzy, (5.4)
where ¢ € C°(U).

Definition 5.3.

/UwE/U¢:/U¢(x)dx1...dxn. (5.5)
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We are going to state and prove the change of variables theorem for integrals of
differential k-forms. To do so, we first need the notions of orientation preserving and
orientation reversing.

Let U,V be open sets in R". Let f: U — V be a C* diffeomorphism. That is,
for every p € U, Df(p) : R — R" is bijective. We associate D f(p) with the matrix

dfi
Df(p) = [ o ,<p>} . (5.6)
The map f is a diffeomorphism, so
det Bi @)} £0. (5.7)

So, if U is connected, then this determinant is either positive everywhere or negative
everywhere.

Definition 5.4. The map f is orientation preserving if det > 0 everywhere. The
map f is orientation reversing if det < 0 everywhere.

The following is the change of variables theorem:

Theorem 5.5. If w € Q2(V), then

Aﬁwzﬁw (5.8)

if fis orientation preserving, and

Aﬁw——Lw (5.9)

In Munkres and most texts, this formula is written in slightly uglier notation. Let
w=¢(x)dry A+ Ndxy, O

if fis orientation reversing.

o= o)) det | 3F

Lj

} dxy A - Ndx,. (5.10)

The theorem can be written as following:

Theorem 5.6. If f is orientation preserving, then
dfi

/gb:/gbofdet[ J

v U O
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This is the coordinate version of the theorem.
We now prove a useful theorem found in the Supplementary Notes (and Spivak)

called Sard’s Theorem.

Let U be open in R™, and let f : U — R™ be a C(U) map. For every p € U, we
have the map Df(p) : R™ — R"™. We say that p is a critical point of f if Df(p) is not
bijective. Denote

Cy = the set of all critical points of f. (5.12)

Sard’s Theorem. The image f(Cy) is of measure zero.
Proof. The proof is in the Supplementary Notes. O

As an example of Sard’s Theorem, let ¢ € R™ and let f : U — R” be the map
defined by f(z) = c¢. Note that Df(p) =0 for all p € U, so Cy = U. The set Cy =U
is not a set of measure zero, but f(Cy) = {c} is a set of measure zero.

As an exercise, you should prove the following claim:

Claim. Sard’s Theorem is true for maps f : U — R", where U is an open, connected
subset of R.

Proof Hint: Let f € C*°(U) and define g = %. The map ¢ is continuous because
f eCU). Let I =[a,b] C U, and define ¢ = b — a. The continuity of g implies that
g is uniformly continuous on I. That is, for every € > 0, there exists a number N > 0
such that |g(z) — g(y)| < € whenever x,y € I and |z —y| < {/N.

Now, slice I into N equal subintervals. Let I, =1,...,k < N be the subintervals
intersecting C'y. Prove the following lemma:

Lemma 5.7. If z,y € I, then |f(z) — f(y)| < el/N.

Proof Hint: Find ¢ € I, such that f(z)— f(y) = (x—y)g(c). There exists ¢y € I, NCy
if and only if g(cp) = 0. So, we can take

g9(c)] = lg(c) — g(co)| < €. (5.13)

Then |f(z) — f(y)| < el/N. O
From the lemma, we can conclude that

) =7, (5.14)

is of length less than e//N. Therefore,

k

fiernncl g (5.15)
r=1
is of length less than
el el N
—k < — =€l 1
Nk < el (5.16)
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Letting € — 0, we find that F'(Cy N 1) is of measure zero.

To conclude the proof, let I,,,m = 1,2,3,..., be an exhaustion of U by closed
intervals Iy C Iy C I3 C --- such that |JI,, = U. We have shown that f(C; N I,,) is
measure zero. So, f(Cy) =J f(Cy N I,) implies that f(Cy) is of measure zero. [
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Lecture 25

5.1 The Poincare Lemma

Let U be an open subset of R", and let w € QF(U) be a k-form. We can write
w=> ardrs, I = (iy,...,i), where each a; € C*(U). Note that

weQ = a; €CP(U) for each I. (5.17)
We are interested in w € Q7(U), which are of the form

w= fdxy N\ Ndx,, (5.18)

[o=[ 1= s (5.19)

the Riemann integral of f over U.
Our goal over the next couple lectures is to prove the following fundamental the-
orem known as the Poincare Lemma.

where f € C3°(U). We define

Poincare Lemma. Let U be a connected open subset of R", and let w € Q2 (U). The
following conditions are equivalent:

1. fUu):0,
2. w=dp, for some p € Q1(U).

In today’s lecture, we prove this for U = Int @, where Q = [a1,b1] X -+ X [ay, by]
is a rectangle.

Proof. First we show that (2) implies (1).

Notation.
dzg A Adrg A Aday = dag A Adaiy Adzgg A A da,. (5.20)
Let u € Qm~1(U). Specifically, define

/L:Zfidxl/\---/\cix\i/M--/\dacn, (521)

where each f; € C3°(U). Every u € Q" 1(U) can be written this way.
Applying d we obtain

ofi o
z J
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Notice that if ¢ # 7, then the 4, jth summand is zero, so

df; —
duzzaidxi/\dxl/\--~/\dxi/\--~/\dxn

(5.23)
= Z(—l)i_l%dx A Ndx
8% ! "
Integrate to obtain
. of,
du="Y (1)~ [ = 5.24
[ an= [ 5 (5.24)
Note that
"o,
8—%51@ = filz)|ZZhi =0-0=0, (5.25)

because f is compactly supported in U. It follows from the Fubini Theorem that

ofi
/Uaxi — 0. (5.26)

Now we prove the other direction, that (1) implies (2). Before our proof we make
some remarks about functions of one variable.

Suppose I = (a,b) C R, and let g € C;°(I) such that supp g C [¢,d|, where
a < c<d<b. Also assume that

/bg(s)ds = 0. (5.27)
Define N
h(z) = / g(s)ds, (5.28)

where a < z < b.

Claim. The function h is also supported on c,d.

Proof. If > d, then we can write

h(z) = / " g(s)ds — / ’ o(s)ds, (5.29)

where the first integral is zero by assumption, and the second integral is zero because
the integrand is zero. O

Now we begin our proof that (1) implies (2).
Let w € Q"(U), where U = @), and assume that

/U w=0. (5.30)

We will use the following inductive lemma:
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Lemma 5.8. For all 0 < k < n+ 1, there exists u € Q" (U) and f € C*(U) such
that

w=du+ fdxy AN--- Ndz, (5.31)
and

/f T1ye oy Tp)dxy ... dx, = 0. (5.32)

Note that the hypothesis for & = 0 and p = 0 says that [w = 0, which is our
assumption (1). Also note that the hypothesis for k = n+ 1, f =0, and w = du
is the same as the statement (2). So, if we can show that (the lemma is true for k)
implies (the lemma is true for k 4 1), then we will have shown that (1) implies (2) in
Poincare’s Lemma. We now show this.

Assume that the lemma is true for k. That is, we have

w=du+ fdxy N+ Ndx, (5.33)

and
/f X1y Tp)dxy .. dx, =0, (5.34)

where p € Q" 1(U), and f € C°(R).
We can assume that p and f are supported on Int @', where @' C Int @@ and

Ql = [Cl,dl] X+ X [Cnadn]'
Define

g(xy, ...,z /f Ty ooy Tp)dpsq - - ATy, (5.35)

Note that g is supported on the interior of [c1, d] X -+ X [cg, di]. Also note that

b
/ g(ml,...,xk_l,s)ds:/f(xl,...,xn)dxk...dxn:0 (5.36)

ag

by our assumption that the lemma holds true for k.

Now, define

Tk
h(xy,...,x5) = / g(x, ..., x_1, 8)ds. (5.37)
ag

From our earlier remark about functions of one variable, h is supported on ¢, < zp <
dy. Also, note that h is supported on ¢; < x; < d;, for 1 <i < k — 1. We conclude
therefore that h is also supported on [¢y,d] X -+ X [eg, dy].

Both ¢g and its “anti-derivative” are supported.

o _
ka_

Let ¢ = n — k, and consider p = p(Tps1,...,7,) € C(RY). Assume that p is
supported on the rectangle [cxi1, dki1] X -+ X [¢n, d,] and that

(5.38)

/pd:ckﬂ oodz, = 1. (5.39)
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We can always find such a function, so we just fix one such function.
Define

v= (=1 n(zy,...,00)p(Tps1,. .., 20)dTy A-e- A E:-c\k A ANdx,.

The form v is supported on Q' = [c1,dy] X -+ X [¢y, dy].
Now we compute dv,

dv = (_1)k2£(hp)d:chdx1/\---/\g;-g\k/\.../\dxn'
; j

Note that if j # k, then the summand is zero, so

A _
dv = (— 1)8a pdxy Ndxy A --- Ndxg A -+ Ndx,
Tk
h
= (-1 )8 pdxy A -+ Adx,
Oy,
= —gpdxy N\ --- Ndzx,.
Now, define
Mnew = Wb — UV,
and

frew = f(@1, ) = g(@r, o w) p(Thga, - )

w = d//mew + fnewd'xl JANERIAN dxn
=du+ (g(x1, ..., xp)p(Trary - Tn) — flT1, ..o x) — gp)dzy A -+ AN dxy,
=dp+ fdxy A --- Ndx,
=w.

Note that
/fnew - /fnew(l’l, e ,xn)dka .. dl’n
= /f(xl, ey Tp)dTpy - dy,

—g(xy, ..., xx) /p(a:kH, e Tp)dTpyy - dTy

=g(z1,...,25) — g(z1,...,2%) =0,

which implies that the lemma is true for k + 1.

Remark. In the above proof, we implicitly assumed that if f € C§°(R"), then

g(zy,...,x /fxl,..., Ydxpyq ... dxpy,

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

is in C°(R*). We checked the support, but we did not check that g is in C>(R¥).

The proof of this is in the Supplementary Notes.
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Lecture 26

We continue our study of forms with compact support. Let us begin with a review.
Let U € R™ be open, and let

w=>_fr(z1,... z)d, (5.48)
I
where I = (i1, ...,14) is strictly increasing and dx; = dz;, A --- A dx;,. Then
w is compactly supported <= every f; is compactly supported. (5.49)
By definition,
supp fr={x € U : fi(x) # 0}. (5.50)
We assume that the f;’s are C? maps.
Notation.
QF(U) = space of compactly supported differentiable k-forms on U. (5.51)

Now, let w € Q2 (U) defined by
w= f(xy,...,zp)dxy A+ ANdzy, (5.52)

where f € Q%(U). Then

/ w= flzy, .o xn)dey A - A dxy,. (5.53)
n R"L

Last time we proved the Poincare Lemma for open rectangles R in R". We assumed
that w € Q(Int R). That is, we assumed that w € Q(R") such that supp w C Int R.
We showed that for such w the following two conditions are equivalent:

L. [paw =0,
2. There exists a u € Q77! (Int R) such that du = 0.

Definition 5.9. Whenever w € Q¥(U) and w = dpu for some y € Q¥ 1(U), we say
that w is ezact.

Definition 5.10. Whenever w € Q¥(U) such that dw = 0, we say that w is closed.

Observe that
weU) = dw=0. (5.54)

Now we prove the Poincare Lemma for open connected subsets of R".
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Poincare Lemma. Let U be a connected open subset of R", and let w € Q2 (U). The
following conditions are equivalent:

1. [,w=0,
2. w=du, for some p € Q1(U).

Proof. We prove this more general case by reducing the proof to the case where U is
a rectangle, which we proved in the previous lecture.

First we prove that (2) implies (1). We can choose a family of rectangles {R;,i €
N} such that

U=|Jnt R; (5.55)
ieN

Since the support of i is compact, the set supp p is covered by finitely many of the
rectangles.

We take a partition of unity {¢;,7 € N} subordinate to {R;}, so that

N

= ¢ipv )supported on Int R; (5.56)

— N~
=1

/du = Z/ d(¢ige). (5.57)

Each term on the r.h.s is zero by the Poincare Lemma we proved last lecture.
We now prove the other direction, that (1) implies (2). It is equivalent to show

that if wy,wy € Q2(U) such that
/w1 _ /wQ, (5.58)

then w; ~ wy, meaning that there exists a form p € Q71 (U) such that w; = wq + dp.
Choose a partition of unity {¢;} as before. Then

Then

(5.59)

&
I
)=

piw
~—~
supported on Int R;

Let

/w _ceR, (5.60)

and

/gbiw = ¢ (5.61)
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Choose a form wq such that

/ wo = 1 (5.62)

and such that supp wy € Q)9 = R; for some j. Then

/ o :/ ciwy (5.63)

supported in R; supported in Qo
We want to show that there exists u; € Q?1(U) such that ¢;w = c;w; + du;.
Now we use the fact that U is connected. We use the following lemma.

Lemma 5.11. Let U be connected. Given rectangles R; such that supp ¢;w C Int R;,
and given a fized rectangle QQy and any point x € U, there exists a finite sequence
of rectangles Ry, ..., Ry with the following properties: Qo = Ry, x € Int Ry, and
(Int R;) N (Int R;41) is non-empty.

We omit the proof of this lemma.

Now, define w; = ¢;w, so
/wi = /CZUJQ. (564)

supp (c;wo) C Int (Qo) (5.65)
supp (w;) C Int (R;). (5.66)

Note that

Choose forms v; such that supp v; C Int R; N Int R;,; and such that

/W:L (5.67)

supp (v; — vip1) C Int R4y (5.68)

This implies that

By definition,
Jwi=vim) =0 (5.69)
By the Poincare Lemma we proved last time, v; ~ v;11, so there exists y; € Q"= (U)
such that v; = v;11 + dp;.
So,

CiWn ~ Cilg ~ CiUL ~ ...~ CGUN ~ Ojw. (5.70)

]
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5.2 Proper Maps and Degree

We introduce a class of functions that remain compactly supported under the pullback
operation.

Definition 5.12. Let U C R" and V C R*, and let f : U — V be a continuous map.
The map f is proper if for all compact subsets K C V, the set f~(K) is compact.

Let U CR" and V C R¥ and let f : U — V be a continuous map. Also let
w € QF(V). The map

Q) = Q¥D) (5.71)
is defined such that
w=9gU1,-- Yn)dyy N ... ANdy;, — [fw=g(f(x))dfiy, A---df;,. (5.72)
So,
S~ (supp w) 2 supp (f*w). (5.73)

If f is proper and w € Q%(V'), then supp (f*w) is compact, in which case the map f*
is actually of the form

k) = QD). (5.74)
That is, w € QX(V) — f*w € Q2(U). So, it makes sense to take the integral
/f*w = (degf)/ w. (5.75)
U v

Theorem 5.13. Let U,V be connected open subsets of R™, and let f : U — V be a
C* map. For allw € Q(V),

*w=(d . 5.76
| rro=taeen [ o (5.76)
Proof. Take wy € Q(V) such that
/ o =1. (5.77)
Define
deg f = /f*wo, (5.78)

and suppose that

/ b= (5.79)
/ o= / . (5.80)
111
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By the Poincare Lemma, w ~ cwy. That is, there exists yu € Q" 1(V) such that

w = cwy + dp. Then
[rw= f*(cwo) + f*(dp)
= [*(cwo) +d(f" 1),
which shows that f*w ~ f*(cwp). Putting this altogether,

[ o= [ e
:c/f*wg

=cdeg f
= (/w) deg f.

We had w = g(y1, .-, yn)dys A -+ A dyy, so
ffw=g(f(x)dfy A Ndfn

— g(f(2)) det Pfl’

8.Tj
where we used the fact that

0f;
Z 8% dl’j

Restated in coordinates, the above theorem says that

/Ug(f(:c)) det(Df)dxzy A -+ Adxy,

:|d$1/\"-/\dxn,

(5.81)

(5.82)

(5.83)

(5.84)

=(degf)/vg(y1,.--,yn)dy1/\---/\dyn. (5.85)

Claim. Given proper maps f:V — W and g : U — V, where U, V,W are connected

open subsets of R™,
deg(fg) = (deg g)(deg f).

Proof. Note that (f og)* = ¢g* o f*, so

deg(fog)/WWZ/U(fog)*w
Z/Vg*(f*w)
:(degg)/vf*w

= (deg g)(deg f) / w

w
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Lecture 27

We proved the following Poincare Lemma:

Poincare Lemma. Let U be a connected open subset of R", and let w € Q2 (U). The
following conditions are equivalent:

1. [,w=0,
2. w=dp, for some p € Q1(U).

We first proved this for the case U = Int @), where ) was a rectangle. Then we
used this result to generalize to arbitrary open connected sets. We discussed a nice
application: proper maps and degree.

Let U,V be open subsets of R, and let f : U — V be a C*° map. The map f is
proper if for every compact set C' C V| the pre-image f~(C) is also compact. Hence,
if f is proper, then

FONV) € OK(D). (5.59)
That is, if w € QF(V), then f*w € QF(U), for all k.
When k£ =n,
w e QHV). (5.89)

In which case, we compare

/v w and /U Fw. (5.90)

Using the Poincare Lemma, we obtain the following theorem.

Theorem 5.14. There exists a constant v¢ with the property that for allw € Q2 (V),

[ o= [ (5.91)

We call this constant the degree of f,

Definition 5.15.
deg(f) =y (5.92)

Let U, V, W be open connected subsets of R”, and let f: U -V andg:V — W
be proper C* maps. Then the map go f : U — W is proper, and

deg(g o f) = deg(f) deg(g). (5.93)

Proof Hint: For all w € Q2 W), (go f)'w = f*(g*w). O
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We give some examples of the degree of various maps. Let f = T, the transpo-
sition by a. That is, let f(x) = z + a. From #4 in section 4 of the Supplementary
Notes, the map T, : R — R" is proper. One can show that deg(7,) = 1.

As another example, let f = A : R™ — R"” be a bijective liner map. Then

1 if det A
deg A = 1 A >0, (5.94)
—1 ifdetA <o.

We now study the degree as it pertains to orientation preserving and orientation
reversing maps.

Let U,V be connected open sets in R”, and let f : U — V be a diffeomorphism.
Takep € U. Then Df(p) : R™ — R" is one-to-one and onto. The map f is orientation
preserving if det D f(p) > 0 for all p € U, and the map f is orientation reversing if
deg Df(p) <0 forall peU.

Theorem 5.16. If f is orientation preserving, then deg(f) = 1; if f is orientation
reversing, then deg(f) = —1.

Proof. Let a € U and b = f(a). Define

Joa = [ (5.95)

and define
fnew = T—b o fold o Taa (596)
where T, : R® — R™ and 7, : R" — R" are transpositions by —b and a, respectively.

By the formula deg(g o f) = deg(f) deg(g),

deg(fnew) = deg(T—b) deg(fold) deg(Ta)

— deg(u). (5.97)

By replacing f with fiew, we can assume that 0 € U and f(0) = 0.

We can make yet another simplification, that D f(0) = I, the identity. To see this,
let Df(0) = A, where A : R" — R™. Taking our new f, we redefine f,q = f, and we
redefine fpew = A7' 0 foq. Then,

deg(fnew) - deg(A> deg deg(fold)7 (598)
where
deg A = deg(D fon)
B {1 if D f,q is orient. preserving, (5.99)

—1 if Dfyq is orient. reversing.
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We again replace f with f.,. It suffices to prove the theorem for this new f. To
summarize, we can assume that

0eU, f(0)=0. and Df(0)=1. (5.100)

Consider g(z) = x — f(z) (so f(z) = z — g(x)). Note that (Dg)(0) =1 —1=0. If
we write g = (g1, ..., 9n), then

{gif (0)} — 0. (5.101)

So, each g—i’;(O) = 0.
Lemma 5.17. There exists § > 0 such that for all |x| <6,

(5.102)

Proof. So far, we know that ¢g(0) = 0 — f(0) = 0, and 3792(0) = 0. By continuity,

there exists d > 0 such that 5
gi

T a)
for all |z| < §. Using the Mean-value Theorem, for all |z| < 0,

g9i(x) = gi(z) — gi(0)

< — (5.103)

N ﬁxj I
where ¢ = tox for some 0 < tg < 1. So,

"1

< _

(o)1 < 3 gl
1
1
n

Define f : R® — R” as follows. Let p € Cs°(R™), defined to have the follow
properties
1 if |z] < §/2,
p(z) =<0 if |x| > 0, (5.106)
0<p(r) <1 otherwise.
Remember that f(z) =z — g(x). Define

= o —p(x)g(z) if |z| <0,
/= {x if |z| > 6. (5.107)
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Claim. The map f has the following properties:
f(zx) for all |z| < %,

1. f
2. f=ua forall |z| > 0,
3. |f(@) = 5,
4o 1f(@)] < 2.

Proof. We only proof properties (3) and (4). First we prove property (3). We have

F
f(z) =2 — p(z)g(x) = x when |z| > 0, so |f(x)| = |z| when |z| > §. For |z| < §, we
have

@) = [a] = p(a)|g(2)]

= |z| = [g(2)]
> | — |z| (5.108)
2
_ =l
5

We now prove property (4). We have f(z) = = — p(z)g(x), so |f(z)| = |z| for
x > 0. For x < 9, we have

F(@)] <l + ple) g(a)
< fol + glal (5.100)

< 2|z|.

Let @, = {z € R": |x| < r}. The student should check that

Property (3) = f7(Q,) € Qs (5.110)

and that )
Property (4) = f '(R" — Q,,) CR" - Q, (5.111)

Notice that ffl(Q,,) C Qy = [ is proper.
Now we turn back to the map f. Remember that f: U — V is a diffeomorphism
and that f(0) = 0. So, the set f(Int Qs5/2) is an open neighborhood of 0 in R". Take

w € Q2 (f(Int Qs/2) NInt Qs/4) (5.112)

such that
/ w=1. (5.113)
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Then,
frw € Q(Qs2)

and .
ffw e QX (Qs)2),

by Equation 5.110. This shows that f*w = f*w. Hence,

[1ro= [ Fo=desn) [

) [ o

/wzl.
1%

deg(f) = deg(f).
Now, let us use Equation 5.111. Choose w € Q"(R™ — Qs5). So,

ffw e Q2R — Qs).

- /nw:

By property (2), f =1 on R" — Qs, so

where

Therefore,

Again we take

fw = w.

[Pt [ [

deg(f) = deg(f) = 1.

Integrating,

Therefore,
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Lecture 28

Let U,V be connected open sets of R"”, and let f : U — V be a diffeomorphism.

Then
+1 if f is orient. preserving,

deg(f) = {

We showed that given any w € Q(V),

fre=s -

Let w = ¢(x)dxy A -+ - A dx,,, where ¢ € Cg°(V). Then

0fi
c%vj

e [

fi

i

—1 if f is orient. reversing.

frw = 6(f(x)) det {

fusrm 2

f is orientation preserving <= det [

(m)} dry N - Ndxy,

S0,

Notice that

j(a:)] -0,

fi

f is orientation reversing <= det [8 (x)] < 0.
L

[ outen e [FEeo)

As usual, we assumed that f € C™.

So, in general,

dzx.

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)

Remark. The above is true for ¢ € C}, a compactly supported continuous function.
The proof of this is in section 5 of the Supplementary Notes. The theorem is true

even if only f € C! (the notes prove it for f € C?).

Today we show how to compute the degree in general.

Let U,V be connected open sets in R™, and let f: U — V be a proper C* map.

Claim. Let B be a compact subset of V', and let A= f~Y(B). If Uy is an open subset
of U with A C Uy, then there exists an open subset Vi of V' with B C Vi such that

(Vo) C 0.
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Proof. Let C C V be a compact set with B C Int C, and let W = f~}(C) — Uy. The
set W is compact, so the set f(WV) is also compact. Moreover, f(W) N B = ¢ since
f~Y(B) C U.
Now, let Vo = Int C' — f(W). This set is open, and
f7 (Vo) € f7H(Int C) =W
C Up.

(5.131)
Claim. If X C U is closed, then f(X) is closed in V.

Proof. Take any point p € V — f(x). Then f~'(p) € U — X. Apply the previous
result with B = {p}, A = f~!(p), and Uy = U — X. There exists an open set Vj 3 p
such that f™' C U — X. The set Vo N f(X) = ¢, so V — f(X) is open in V. ]

We now remind you of Sard’s Theorem. Let f: U — V be a proper C* map. We
define the critical set

Cr={peU:Df(p) is not bijective}. (5.132)

The set Cf is closed. The set f(Cy) in V is a set of measure zero. The set f(C}) is
closed as well, since f is proper.

Definition 5.18. A point ¢ € V' is a regular value of f if ¢ € V — f(CYy).
Sard’s Theorem basically says that there are “lots” of regular values.
Lemma 5.19. If q is a reqular value, then f~1(q) is a finite set.

Proof. First,p € f~'(q) = p ¢ C;. So, Df(p) : R* — R" is bijective. By the IFT,
the map f is a diffeomorphism of a neighborhood U, of p € U onto a neighborhood
of q. In particular, since f is one-to-one and onto,

U, f7(q) = {p}. (5.133)

Consider the collection {U, : p € f~'(q)}, which is an open cover of f~'(¢q). The H-B
Theorem tells us that there exists a finite subcover {U,,,i =1,..., N}. Hence,

) =A{p1,.-,pn}- (5.134)

[

Theorem 5.20. The degree of f is
N
deg(f) => oy, (5.135)
i=1

120



where

- {+1 if Df(p;) is orient. preserving, (5.136)

—1 if Df(p;) is orient. reversing.

So, to calculate the degree, you just pick any regular value q and “count” the number
of points in the pre-image of q, keeping track of the value of op,.

Proof. For each p; € f~1(q), let U, be an open neighborhood of p; such that f maps
U,, diffeomorphically onto a neighborhood of g. We can assume that the U,,’s do not
intersect.

Now, choose a neighborhood Vj of ¢ such that

) < U (5.137)
Next, replace each Uy, by U,, N f~1(Vp). So, we can assume the following:
1. f is a diffeomorphism of U, onto V,
2. /71 (Vo) = U,
3. The U,,’s don’t intersect.
Choose w € Q7(Vp) such that

/Vw 1 (5.138)

Then,
ey,
= Z 0p, /VO w (5.139)
= Zapi'
But,
/ ffw = (deg f) / w =deg f, (5.140)
U U
SO
> o, =deg f. (5.141)
O

This is a very nice theorem that is not often discussed in textbooks.
The following is a useful application of this theorem. Suppose f~!(q) is empty, so
q ¢ f(U). Then g ¢ f(Cy), so q is a regular value. Therefore,

deg(f) = 0. (5.142)

This implies the following useful theorem.
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Theorem 5.21. If deg(f) # 0, then f:U — V is onto.

This theorem can let us know if a system of non-linear equations has a solution,
simply by calculating the degree. The way to think about this is as follows. Let
f=(f1,...,fa) and let ¢ = (¢1,...,¢c,) € V. If ¢ € f(U) then there exists a solution
x € U to the system of non-linear equations

filx)=c¢, i=1,...,n. (5.143)
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Lecture 29

We have been studying the important invariant called the degree of f. Today we
show that the degree is a “topological invariant.”

5.3 Topological Invariance of Degree

Recall that given a subset A of R™ and a function F': A — R, we say that F is C*®
if it extends to a C* map on a neighborhood of A.
Let U be open in R™, let V be open in R¥ and let A= U x [0, 1].

Definition 5.22. Let fy, f1 : U — V be C* maps. The maps fy and f; are homotopic
if there is a C*® map F': U x [0, 1] — V such that F(p,0) = fo(p) and F(p,1) = f1(p)
forall p e U.

Let f; : U — V be the map defined by

fit(p) = F(p, ). (5.144)

Note that FF € C* = f, € C*. So, f; : U — V, where 0 <t < 1, gives a family
of maps parameterized by t. The family of maps f; is called a C* deformation of fy
into fi.

Definition 5.23. The map F' is a proper homotopy if for all compact sets A C V,
the pre-image F~!(A) is compact.

Denote by 7 the map 7 : U x [0,1] — U that sends (p,t) — ¢. Let A C V
be compact. Then B = m(F~'(A)) is compact, and for all ¢, f7'(A) C B. As a
consequence, each f; is proper.

We concentrate on the case where U,V are open connected subsets of R™ and
fo, f1 : U — V are proper C* maps. We now prove that the degree is a topological
invariant.

Theorem 5.24. If fy and fi are homotopic by a proper homotopy, then

deg(fo) = deg(f1)- (5.145)

Proof. Let w € Q%(V) and let supp w = A. Let F': U x I — V be a proper homotopy
between fy and f;. Take B = w(F~!(A)), which is compact. For all ¢t € [0,1],
f7(4) C B.

Let us compute fw. We can write w = ¢(x)dx; A --- A dx,, where supp ¢ C A.
So,

fiw=o(F(x,t))det {8}*} (x, t)] dzi A A dan, (5.146)

81’]'
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and

[ gro=destsy [ v
_ /U S(F(z, 1)) det {g—i(:c, t)} day ... dan,

Notice that the integrand is supported in the compact set B for all ¢, and it is C*
as a function of x and ¢. By Exercise #2 in section 2 of the Supplementary Notes,
this implies that the integral is C* in t. From Equation 5.147, we can conclude that
deg(f:) is a C* function of ¢.

Now here is the trick. Last lecture we showed that deg(f;) is an integer. Since
deg(f) is continuous, it must be a constant deg(f;) = constant. O

(5.147)

We consider a simple application of the above theorem. Let U = V = R2, and
think of R? = C. We make the following associations:

i?=—1 (5.148)
z=x+1y (5.149)
Z=x—1y (5.150)
2z = |z|* = 2® + ¢ (5.151)
dz = dx + idy (5.152)
dz = dx —idy (5.153)
dz N dz = —2idz N dy (5.154)
1
de Ndy = Eidz Ndz. (5.155)
Consider a map f : R? — R2, thinking of R? = C, defined by
n—1
flz)=2"+ Z ¢z, ¢; € C. (5.156)
i=0
Claim. The map f is proper.
Proof. Let C' =3 |¢]|. For |z] > 1,
n—1
> | <Ot (5.157)
i=0

So,

)z 2 = 3 s
= [z[" = COl2" (5.158)
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For |z| > 2C,
2"

|f(2)] > —-. (5.159)

So, if R > 1 and R > 2C, then f~'(Bgr) C Bpg,, where R?/2 < R (and where B,
denotes the ball of radius r). So f is proper. O]

Now, let us define a homotopy F': C x [0,1] — C by
Fzt)=2"+1) ¢z, (5.160)

We claim that F~'(Bg) C Bg, x [0,1], by exactly the same argument as above. So
F' is proper.
Notice that

F(z,1) = fi(2) = f(2), (5.161)
F(z,0) = fo(z) = 2" (5.162)

So, by the above theorem, deg(f) = deg(fo).

Let us compute deg(fy) by brute force. We have fo(z) = 2", so
fidz = dz" = nz""tdz, (5.163)
fodz = dz" = nz""tdz. (5.164)
Using the associations defined above,
* i * =
foldz N dy) = §f0 (dz A dz)
1
= —fidz A fydz
zfo @A Jodz (5.165)
= %n2|z|2(”_1)dz Ndz
+n?| 2> 2dx A dy.
Let ¢ € C3°(R) such that
/ o(s)ds = 1. (5.166)
0

Let w = ¢(|z]*)dz A dy. We calculate [,,w. Let us use polar coordinates, where
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= VETE =4,
[ o= [ otlsPydzay
R2 R2
= o(r?)rdrdd
R2
—27r/ o(r*)rdr

> d
+ 2 / 6(s) %
0 2
= .
Now we calculate [ fiw. First, we note that
fiw = B(122n2]2"2da A dy.
So,
/f(’fu) = nQ/ o(r*™)r*" " 2rdrdf
0

_ 22 > 2n 2n—1d
n<7r>/0 o2y dy

—wem) [ oy

To summarize, we have calculated that

w=m7 and fow = nm.
R? R?

Therefore,

deg(fo) = deg(f) = n.

(5.167)

(5.168)

(5.169)

(5.170)

(5.171)

A better way to do the above calculation is in the homework: problem #6 of section

6 of the Supplementary Notes.

Last lecture we showed that if deg(f) # 0, then the map f is onto. Applying this

to the above example, we find that the algebraic equation

n—1
2"+ E ¢z =0
i=0

has a solution. This is known as the Fundamental Theorem of Algebra.
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Lecture 30

6 Manifolds

6.1 Canonical Submersion and Canonical Immersion Theo-
rems

As part of today’s homework, you are to prove the canonical submersion and im-
mersion theorems for linear maps. We begin today’s lecture by stating these two
theorems.

Let A : R™ — R™ be a linear map, and let [a;;] be its associated matrix. We have
the transpose map A’ : R™ — R™ with the associated matrix [aj;].

Definition 6.1. Let k < n. Define the canonical submersion map 7 and the canonical
immersion map ¢ as follows:
Canonical submersion:

TR S RF (2. ,20) — (21, .., 7). (6.1)
Canonical immersion:
iRF SR (2, 2) — (21,25, 0,...,0). (6.2)

Canonical Submersion Thoerem. Let A : R" — R* be a linear map, and suppose

that A is onto. Then there exists a bijective linear map B : R™ — R™ such that
AoB=m.

Proof Hint: Show that there exists a basis vy, ..., v, of R” such that Av; = ¢;, i =
1,...,k, (the standard basis of R¥) and Av; = 0 for all i > k. Then let B : R* — R"
be the linear map Be; = v;, i = 1,...,n, where e;,...,e, is the standard basis of
R™. m

Canonical Immersion Thoerem. As before, let k < n. Let A : R¥ — R" be a
one-to-one linear map. Then there exists a bijective linear map B : R® — R™ such
that Bo A = .

Proof Hint: Note that Bo A =1 <= A'B' = 7. Use the Canonical Submersion
Theorem. ]

Now we prove non-linear versions of these two theorems.
Let U be an open set in R”?, and let f: U — R* be a C* map. Let p € U.

Definition 6.2. The map f is a submersion at p if Df(p) : R® — R* is onto.

127



Canonical Submersion Thoerem. Assume that f is a submersion at p and that
f(p) = 0. Then there exists a neighborhood Uy of p in U, a neighborhood V' of 0 in
R", and a diffeomorphism g : V' — Uy such that fog=m.

Proof. Let T), : R™ — R" be the translation defined by x — z 4+ p. Replacing f by
f oT, we can assume that p =0 and f(0) = 0.

Let A = (Df)(0), where A : R® — R* is onto by the assumption that f is a
submersion. So, there exists a bijective linear map B : R” — R" such that Ao B = 7.
Replacing f by f o B we can assume that Df(0) = .

Define a map h : U — R" by

My, .o xn) = (f(@1, o0 TE); Tpg1s - o Tiy)- (6.3)

Note that (1) Dh(0) = I; and (2) 7h = f. By (1), the function h maps a neighborhood
Up of 0 in U diffeomorphically onto a neighborhood V' of 0 in R". By (2), we have
7= foh !l Take g=h" O

There is a companion theorem having to do with immersions.

Definition 6.3. Let U be an open subset of R*, and let f : U — R” be a C* map.
Let p € U. The map f is an immersion at p if (Df)(p) : R¥ — R" is injective
(one-to-one).

Canonical Immersion Thoerem. Let U be a neighborhood of 0 in RF, and let
f:U— R"™ be aC>® map. Assume that f is an immersion at 0. Then there exists a
neighborhood V of f(0) = p in R", a neighborhood W of 0 in R¥, and a diffeomorphism
g:V — W such that . *(W) CU and go f = 1.

Proof. Replacing f by T, o f, we can assume that f(0) = 0. Let A = Df(0), so
A R¥F — R" is injective. There exists a linear map B : R” — R” such that BA = .
Replacing f by B o f, we can assume that Df(0) = ¢.

Let ¢ = n — k. Since U C R*, we get U x R* C RF x R® = R™. Define a map
h:U xR — R" by

h(zy,...,zn) = f(z1,. . 26) + (0,0, Tpat, oo, Ty). (6.4)

One can check that (1) Dh(0) = I; and (2) hov = f.

By (1), the function A maps a neighborhood W of 0 in U x R* diffeomorphically
onto a neighborhood V' of 0 in R™. Moreover, W C U x R, so «+=}(W) C U.

By (2), we obtain the canonical immersion map ¢t = h™'o f. Take g =h~'. O
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6.2 Definition of Manifold

Now we move on to the study of manifolds.

Let X be a subset of R", let Y be a subset of R™, and let f : X — Y be a
continuous map. We define that the map f is a C> map if for every point p € X
there exists a neighborhood U, of p in R" and a C* map g, : U, — R" such that
gl XU, = f.

We showed in the homework that if f: X — Y is a C> map, then there exists a
neighborhood U of X in R™ and a C* map ¢ : U — R" extending f.

Definition 6.4. A map f : X — Y is a diffeomorphism if it is one-to-one, onto, a
C>® map, and f~1:Y — X is C™.

Let X be a subset of RY.

Definition 6.5. The set X is an n-dimensional manifold if for every point p € X
there exists a neighborhood V of p in R, an open set U in R™, and a diffeomorphism
f:U —VNX. The collection (f,U, X) is called a parameterization of X at p.

This definition does not illustrate how manifolds come up in nature. Usually
manifolds come up in the following scenario.

Let W be open in RY, and let f; : W — R, i = 1,...,¢ be C* functions. Suppose
you want to study the solution space of

fi(l’l,...,l']\r):o, 221,,€ (65)
Then you consider the mapping f : W — R’ defined by
f(x) = (A=), ..., fo(z)). (6.6)

Claim. If for every p € W the map f is a submersion of p, then Equation 6.6 defines
a k-dimensional manifold, where k = N — (.
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Lecture 31

6.3 Examples of Manifolds

We begin with a review of the definition of a manifold.
Let X be a subset of R", let Y be a subset of R™, and let f : X — Y be a

continuous map.

Definition 6.6. The map f is C* if for every p € X, there exists a neighborhood U,
of pin R” and a C* map g, : U, — R™ such that g, = f on U, N X.

Claim. If f : X — Y s continuous, then there exists a neighborhood U of X in R"™
and a C>* map g: U — R™ such that g = f on U N X.

Definition 6.7. The map f : X — Y is a diffeomorphism if it is one-to-one, onto,
and both f and f~! are C* maps.

We define the notion of a manifold.

Definition 6.8. A subset X of R is an n-dimensional manifold if for every p € X,

there exists a neighborhood V of p in RY, an open set U in R", and a diffeomorphism
o:U—-XNV.

Intuitively, the set X is an n-dimensional manifold if locally near every point
p € X, the set X “looks like an open subset of R™.”

Manifolds come up in practical applications as follows:

Let U be an open subset of RV, let k& < N, and let f : RY — RF be a C* map.

Suppose that 0 is a regular value of f, that is, f~1(0) N Cy = ¢.
Theorem 6.9. The set X = f~1(0) is an n-dimensional manifold, where n = N —k.

Proof. 1f p € f71(0), then p ¢ C;. So the map Df(p) : RY — R* is onto. The map
f is a submersion at p.

By the canonical submersion theorem, there exists a neighborhood V of 0 in R"™,
a neighborhood Uy of p in U, and a diffeomorphism ¢ : V' — U such that

fog=m. (6.7)

Recall that RY = R x R” and 7 : RY — R is the map that sends
(z,y) € R* x R™ — R, (6.8)
Hence, 771(0) = {0} x R® = R™. By Equation 6.7, the function g maps V Nn7=1(0)

diffeomorphically onto Uy N f~1(0). But V N7~1(0) is a neighborhood of 0 in R™ and
Uy N f71(0) is a neighborhood of p in X. O
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We give three examples of applications of the preceding theorem.

1. We consider the n-sphere S™. Define a map
R SR, fr)=ai+... 425, L (6.9)

The derivative is (Df)(z) = 2[x1,...,Tny1], s0 Cp = {0}. If a € f71(0), then
S>a?=1,s0a¢ Cy. Thus, the set f~1(0) = S™ is an n-dimensional manifold.

2. Let g : R" — R* be a C* map. Define
X = graph g = {(2,9) € R" x R* : y = g(2)}. (6.10)
Note that X C R x RF = Rk,

Claim. The set X is an n-dimensional manifold.

Proof. Define a map f : R" x R¥ — R* by

flzy) =y —g(x). (6.11)
Note that Df(z,y) = [-Dg(x), I]. This is always of rank k, so C'y = ¢. Hence,
the graph g is an n-dimensional manifold. O

3. The following example comes from Munkres section 24, exercise #6. Let

M,, = the set of all n x n matrices, (6.12)
S0
M, = R". (6.13)
With any element [a;;] in M,, we associate a vector
(all,...7a1n,(1,21,...,a2n,...). (614)
Now, let
S,={AeM,: A= A"}, (6.15)
i (n+1)
Sy =R™T (6.16)

With any element [a;;] in S,, we associate a vector

(Gn, coey Qip, 22,323, . . ., G2, A33, A34, - - - ) (6'17)

The above association avoids the “redundancies” a5 = as1, az; = a3, azs = ao3,
etc.

Define
On)={AeM, :AtA:I}, (6.18)

which is the set of orthogonal n x n matrices.

As an exercise, the student should prove the following claim.
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Claim. The set O(n) C M,, is an @—dimensional manifold.
Proof Hint: First hint: Let f : M, — &, be the map defined by
f(A)=A"A -1, (6.19)

so O(n) = f~*(0). Show that f~'(0) N C; = ¢. The main idea is to show that
if A¢ f71(0), then the map Df(A): M, — S, is onto.

Second hint: Note that D f(A) is the map the sends B € M,, to A'B+B'A. [

Manifolds are often defined by systems of non-linear equations:

Let f: RY — R* be a continuous map, and suppose that Cy N f~1(0) = ¢. Then
X = f71(0) is an n-dimensional manifold. Suppose that f = (f1,..., fx). Then X is
defined by the system of equations

fi(l’l,...,ZEN):O, 2217,]€ (620)
This system of equations is called non-degenerate, since for every x € X the matrix

[Sg{] (x)} (6.21)

is of rank k.

Claim. Every n-dimensional manifold X C RN can be described locally by a system
of k mon-degenerate equations of the type above.

Proof Idea: Let X C RY be an n-dimensional manifold. Let p € X, let U be an open

subset of R”, and let V be an open neighborhood of p in RN, Let ¢ : I — V NX
be a diffeomorphism. Modifying ¢ by a translation if necessary we can assume that
0 € U and ¢(0) = p. We can think of ¢ as a map ¢ : U — RY mapping U into X.

Claim. The linear map (D¢)(0) : R™ — RY is injective.

Proof. The map ¢! : VNX — U is a C*® map, so (shrinking V if necessary) we can
assume there is a C*®* map ¢ : V — U with ) = ¢! on V N X. Since ¢ maps U onto
V NX, we have 1) o ¢ = ¢! o ¢ = I = the identity map of U onto itself. Thus,

I'=D(¢0¢)(0) = (Dy)(p)(D¢)(0). (6.22)
That is, Di(p) is a “left inverse” of D¢(0). So, D¢(0) is injective. O
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We can conclude that ¢ : U — R is an immersion at 0. The canonical immersion
theorem tells us that there exists a neighborhood Uy of 0 in U, a neighborhood V,, of p
in V, and a C*® map g : V, — RY mapping p onto 0 and mapping V}, diffeomorphically
onto a neighborhood O of 0 in RY such that

HO) = U, (6.23)
and
goop =1 (6.24)
on Uy. Here, the map ¢ is the canonical submersion map ¢ : R* — RY that maps
(X1, ..., 2n) — (21,...,2,,0,...,0).

By Equation 6.24, the function g maps ¢(Uy) onto ¢(Uy). However, by Equa-
tion 6.23, the set t(Up) is the subset of O defined by the equations

2;=0, i=n+1,...,N. (6.25)

So, if g = (g1, ..., 9n), then ¢(Up) = X NV, is defined by the equations

9i=0, i=n+1,...,N. (6.26)
Moreover, the N x N matrix
9gi
6.27
{axj (x)} ( )

is of rank NV at every point x € V), since g : V, — O is a diffeomorphism. Hence, the
last N — n row vectors of this matrix

( 0y 09

8.1’1’.“781‘]\7

),i:n+L“wN, (6.28)

are linearly independent at every point x € V,.
Now let k = N —n and let f; = gitn, ¢ =1,..., k. Then X NV, is defined by the
equations

filx) =0, i=1,... k, (6.29)
and the £ x N matrix
Afi
6.30
o) (6:30)
is of rank £ at all points € V. In other words, the system of equations 6.29 is
non-degenerate. O]
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Lecture 32

6.4 Tangent Spaces of Manifolds

We generalize our earlier discussion of tangent spaces to tangent spaces of manifolds.
First we review our earlier treatment of tangent spaces.
Let p € R™". We define

T,R" ={(p,v) : v € R"}. (6.31)

Of course, we associate T,R" = R™ by the map (p,v) — v.

If U is open in R™, V is open in R* and f : (U,p) — (V,q) (meaning that f
maps U — V and p — py) is a C* map, then we have the map df, : T,R" — T,R*.
Via the identifications T,R" = R" and T,R* = R* the map df, is just the map
Df(p) : R — R*. Because these two maps can be identified, we can use the chain
rule for C* maps. Specifically, if f : (U,p) — (V,q) and g : (V,q) — (R, w), then

d(go f)p = (dg)q o (df)y, (6.32)

because (Dg)(q)(Df(p)) = (Dyg o f)(p).
You might be wondering: Why did we make everything more complicated by using

df instead of Df? The answer is because we are going to generalize from Euclidean
space to manifolds.

Remember, a set X C RY is an n-dimensional manifold if for every p € X, there
exists a neighborhood V of p in RY, an open set U in R", and a diffeomorphism
¢:U—-VNX. Themap ¢ : U — V N X is called a parameterization of X at p.

Let us think of ¢ as a map ¢ : U — RY with Im ¢ C X.

Claim. Let ¢~'(p) = q. Then the map (d¢), : T,R™ — T,RY is one-to-one.

Reminder of proof: The map ¢~ : VN X — U is a C*° map. So, shrinking V if
necessary, we can assume that this map extends to a map ¢ : V. — U such that
¥ = ¢~ on X NV. Then note that for any u € U, we have )(¢(u)) = ¢~ (d(u)) = u.
So, ¥ o ¢ = idy = the identity on U.

Using the chain rule, and letting ¢(q) = p, we get

d(v o ¢)g = (d))o o (dg),
= (d(idU))cr

So, (d¢), is injective. O

(6.33)

Today we define for any p € X the tangent space T,X, which will be a vector
subspace T,X C T,RY™. The tangent space will be like in elementary calculus, that
is, a space tangent to some surface.

Let ¢ : U — V N X be a parameterization of X, and let ¢(q) = p. The above
claim tells us that (d¢), : T,R" — T,R" is injective.
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Definition 6.10. We define the tangent space of a manifold X to be
T,X = Im (d¢),. (6.34)

Because (d¢), is injective, the space T, X is n-dimensional.

We would like to show that the space 7,X does not depend on the choice of
parameterization ¢. To do so, we will make use of an equivalent definition for the
tangent space 7,X.

Last time we showed that given p € X C RV, and k¥ = N — n, there exists a
neighborhood V' of p in RY and a C>® map f : V — R mapping f(p) = 0 such that
XNV = f710). Note that f~'(0) N C; = ¢ (where here ¢ is the empty set).

We motivate the second definition of the tangent space. Since p € f~1(0), the
point p ¢ Cy. So, the map df, : T,RY — TyR* is surjective. So, the kernel of df, in
T,RY is of dimension N — k = n.

Definition 6.11. An alternate definition for the tangent space of a manifold is
T,X = kerdf,. (6.35)
Claim. These two definitions for the tangent space T, X are equivalent.

Proof. Let ¢ : U — V N X be a parameterization of X at p with ¢(p) = ¢. The
function f : V — R* has the property that f~1(0) = X NV. So, fo¢ = 0. Applying
the chain rule,

(dfp) © (dgg) = d(0) = 0. (6.36)
So, Im d¢, = ker df,,. ]

We can now explain why the tangent space 7, X is independent of the chosen
parameterization. We have two definitions for the tangent space. The first does not
depend on the choice of ¢, and the second does not depend on choice of f. Therefore,
the tangent space depends on neither.

Lemma 6.12. Let W be an open subset of RY, and let g : W — R™ be a C* map.
Suppose that g(W) C X and that g(w) = p, where w € W. Then (dg)w C T,X.

Proof Hint: We leave the proof as an exercise. As above, we have a map f : V — RF
such that X NV = f~1(0) and T,X = kerdf,. Let W; = g~ (V), and consider the
map fog:W; — RF. As before, fog=0,so df,odg, =0. O

Suppose that X C RY is an n-dimensional manifold and ¥ C R’ is an m-
dimensional manifold. Let f: X — Y be a C>* map, and let f(p) = q.. We want to

define a linear map
df, : T,X — T,Y. (6.37)

Let v be a neighbor hood of p in RY, and let g : V — R’ be a map such that ¢ = f
on V' N X. By definition T,X C T,R", so we have

dg, : T,RY — T,R¥. (6.38)
We define the map df,, to be the restriction of dg, to the tangent space 7, X.
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Definition 6.13.
df, = dg,|T,X. (6.39)

There are two questions about this definition that should have us worried:
1. Is Im dg,(7,X) a subset of T,Y?
2. Does this definition depend on the choice of g?

We address these two questions here:

1. Is Im dg,(T,X) a subset of T,Y?

Let U be an open subset of RY, let ¢ = f(p), and let ¢ : U — X NV be a
parameterization of X at p. As before, let us think of ¢ as a map ¢ : U — RV
with ¢p(U) C X.

By definition, 7,X = Im (d¢),, where ¢(r) = p. So, given v € T, X, one can
always find w € T,R" with v = (d¢),w.

Now, is it true that (dg),(v) € T,Y? We have

(dg)pv = (dg)p(do)(w)

6.40
— d(go 6}, (w). (040

and the map (g o ¢) is of the form go ¢ : U — Y, so
d(go ¢),(w) € T,Y. (6.41)

2. Does the definition depend on the choice of g?

Consider two such maps g1, g2 : V — Rf. The satisfy g1 = ¢go = f on X NV.
Then, with v, w as above,

(dg1)p(v) = d(g1 0 ¢)r(w) (6.42)
(dg2)p(v) = d(g2 0 ¢)r(w). (6.43)
Since g1 = g on X NV, we have
G1op=ga09=fog. (6.44)
Hence,
d(g1 0 ¢)r(w) = d(gz 0 §)r(w). (6.45)

As an exercise, show that the chain rule also generalizes to manifolds as follows:
Suppose that X, X5, X5 are manifolds with X; € RY and let f : X; — X, and
g: Xo — X3 be C* maps. Let f(p) =q and g(q) =r.

Show the following claim.
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Claim.
d(go f)p = (dgy) o (df ). (6.46)

Proof Hint: Let Vi be a neighborhood of p in R™, and let V5 be a neighborhood of
g in RM. Let f: Vi, — Vi be an extension of f to Vi, and let § : Vo — R be an
extension of g to V5.

The chain rule for f, g follows from the chain rule for f, .
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Lecture 33

6.5 Differential Forms on Manifolds

Let U C R” be open. By definition, a k-form w on U is a function which assigns to
each point p € U an element w, € A*(T/R™).

We now define the notion of a k-form on a manifold. Let X C RY be an n-
dimensional manifold. Then, for p € X, the tangent space T,X C T,R".

Definition 6.14. A k-form w on X is a function on X which assigns to each point
p € X an element w, € A*((T,X)*).

Suppose that f: X — R is a C* map, and let f(p) = a. Then df, is of the form
df, : T,X — T,R =R. (6.47)

We can think of df, € (T,X)* = A'((T,X)*). So, we get a one-form df on X which
maps each p € X to df,.
Now, suppose

i is a k-form on X, and (6.48)
v is an (-form on X. (6.49)
For p € X, we have
1y € A*(T7X) and (6.50)
vy € N(T;X). (6.51)
Taking the wedge product,
pp Avp € AT X)), (6.52)

The wedge product p A v is the (k + ¢)-form mapping p € X to p, A 1.
Now we consider the pullback operation. Let X C RY and Y C R? be manifolds,
and let f: X — Y be a C>® map. Let p € X and a = f(p). We have the map

df, : T,X — T,Y. (6.53)
From this we get the pullback
(df,)" : AN(TY) — AMT; X). (6.54)
Let w be a k-form on Y. Then f*w is defined by

(ffw)p = (dfy) wy. (6.55)
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Let f: X - Y and g : Y — Z be C* maps on manifolds X,Y, 7. Let w be a

k-form. Then
(9o f)w=f"(g'w), (6.56)
where go f : X — Z.

So far, the treatment of k-forms for manifolds has been basically the same as our
earlier treatment of k-forms. However, the treatment for manifolds becomes more
complicated when we study C* forms.

Let U be an open subset of R”, and let w be a k-form on U. We can write

w:ZaI(x)dxil/Mu/\dxik, I'=(iy,... 1) (6.57)

By definition, we say that w € Q*(U) if each A; € C*(U).

Let V be an open subset of R* and let f: U — V be a C*® map. Let w € QF(V).
Then f*w € QF(U). Now, we want to define what we mean by a C* form on a
manifold.

Let X C R™ be an n-dimensional manifold, and let p € X. There exists an open
set U in RY, a neighborhood V of p in RY, and a diffeomorphism ¢ : U — V N X.
The diffeomorphism ¢ is a parameterization of X at p.

We can think of ¢ in the following two ways:

1. as a map of U onto VN X, or
2. as a map of U onto V', whose image is contained in X.

The second way of thinking about ¢ is actually the map ¢x o ¢, where tx : X — RV is
the inclusion map. Note that tx : X — R is C*, because it extends to the identity
map [ : RV — RV,

We give two equivalent definitions for C*° k-forms. Let w be a k-form on X.

Definition 6.15. The k-form w is C* at p if there exists a k-form © € Q¥(V) such
that (%0 = w.

Definition 6.16. The k-form w is C* at p if there exists a diffeomorphism ¢ : U —
V N U such that ¢*w € Q¥(U).

The first definition depends only on the choice of @, and the second definition
depends only on the choice of ¢. So, if the definitions are equivalent, then neither
definition depends on the choice of @ or the choice of ¢.

We show that these two definitions are indeed equivalent.

Claim. The above two definitions are equivalent.

Proof. First, we show that (def 6.15) = (def 6.16). Let w = (\@. Then ¢*w =
(tx0¢)*@. Themap tog: U — V is C*°, and © € QF(v), so ¢*w = (1x0¢)*® € Q*(U).
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Second, we show that (def 6.16) = (def 6.15). Let ¢ : U — V. NU be a
diffeomorphism. Then ¢! : V N X — U can be extended to ¢ : V — U, where v is
C*. On VN X, the map ¢ = 15©, where @ = ¢*(¢*w). It is easy to show that @ is
Ce™. O

Definition 6.17. The k-form w is C* if w is C* at p for every point p € X.
Notation. If w is C*°, then w € QF(X).

Theorem 6.18. If w € Q%(X), then there exists a neighborhood W of X in RN and
a k-form & € QF(W) such that %o = w.

Proof. Let p € X. There exists a neighborhood V,, of p in RY and a k-form w? €
QF(V,) such that tjw? =w on V,N X.
Let
we v (6.58)
peX

The collection of sets {V,, : p € X'} is an open cover of W. Let p;, i =1,2,3,..., be
a partition of unity subordinate to this cover. So, p; € C3°(W) and supp p; C V,, for
some p. Let

P V.
o= e (6.59)
0 elsewhere.
Notice that
U w; = Uy pit’w? (6.60)
= (Uxpi)w

Take

o= iw (6.61)

This sum makes sense since we used a partition of unity. From the sum, we can see
that @ € QF(W). Finally,

G = 5 e 662

]

Theorem 6.19. Let X C RN and Y C R’ be manifolds, and let f : X — Y be a C*®
map. If w € QF(X), then f*w € QF(Y).
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Proof. Take an open set W in R? such that W D Y, and take @ € QF(W) such that
V5w =w. Take any p € X and ¢ : U — V a parameterization of X at p.
We show that the pullback ¢*(f*w) is in QF(U). We can write

¢"(f'w) = " [*(txw)
= (Lo fod)w,
where in the last step we used the chain rule.
The form @ € QF¥(W), where W is open in R’ so to fo¢ : U — W. The

theorem that we proved on Fuclidean spaces shows that the r.h.s of Equation 6.63 is

in QF(U). O

(6.63)

The student should check the following claim:
Claim. If u,v € QK(Y), then
fluhv)y=funfv (6.64)
The differential operation d is an important operator on k-forms on manifolds.
d: QF(X) — QFH(X). (6.65)

Let X C RY be a manifold, and let w € QF(X). There exists an open neighborhood
W of X in RY and a k-form @ € QF(W) such that 150 = w.

Definition 6.20. dw = (% dw.

Why is this definition well-defined? It seems to depend on the choice of @.
Take a parameterization ¢ : U — V N X of X at p. Then

¢ dw = (1x 0 ¢)"dw

=d(1x o ¢)*w
6.66
— 46" (152) (600
= do*w.
So,
¢ do = do*w. (6.67)

Take the inverse mapping ¢! : VN X — U and take the pullback (¢~!)* of each side
of Equation 6.67, to obtain
Udd = (¢~ 1) do*w. (6.68)

The r.h.s does not depend on @, so neither does the L.h.s.
To summarize this lecture, everything we did with k-forms on Euclidean space
applies to k-forms on manifolds.
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Lecture 34

6.6 Orientation of Manifolds

Let X be an n-dimensional manifold in RY. Assume that X is a closed subset of RY.
Let f: X — R be a C*® map.

Definition 6.21. We remind you that the support of f is defined to be

supp f ={z € X : f(x) # 0}. (6.69)

Since X is closed, we don’t have to worry about whether we are taking the closure
in X or in R"™.

Note that
f €CF(X) < supp f is compact. (6.70)
Let w € Q%(X). Then
supp w = {p € X : w, # 0}. (6.71)
We use the notation
w € QF(X) <= supp w is compact. (6.72)

We will be using partitions of unity, so we remind you of the definition:

Definition 6.22. A collection of functions {p; € Cg°(X) :i = 1,2,3,...} is a partition
of unity if

2. For every compact set A C X, there exists N > 0 such that supp p; VA = ¢
for all i > N,

Suppose the collection of sets U = {U,, : a € I} is a covering of X by open subsets
U, of X.

Definition 6.23. The partition of unity p;, ¢ = 1,2,3, ..., is subordinate to U if for
every 1, there exists a € I such that supp p; C U,.

Claim. Given a collection of sets U = {U, : a € I}, there exists a partition of unity
subordinate to U.
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Proof. For each a € I, let (ja be~an open set in RY such that U, = Ua NnX. We
define the collection of sets U = {U, : a € I'}. Let

U=|]JUa. (6.73)

From our study of Euclidean space, we know that there exists a partition of unity
pi €C(U), i=1,2,3,..., subordinate to U. Let tx : X — U be the inclusion map.
Then

pi = piotx = Uxpi, (6.74)
which you should check. O

We review orientations in Euclidean space before generalizing to manifolds. For a
more comprehensive review, read section 7 of the Multi-linear Algebra notes.

Suppose L is a one-dimensional vector space and that v € L—{0}. The set L—{0}
has two components:

{A:A>0} and {lv:\<0}. (6.75)
Definition 6.24. An orientation of L is a choice of one of these components.

Notation. We call the preferred component I, (the positive component). We call
the other component L_ (the negative component).

We define a vector v to be positively oriented if v € L, .
Now, let V' be an n-dimensional vector space.

Definition 6.25. An orientation of V' is an orientation of the one-dimensional vector
space A"(V*). That is, an orientation of V' is a choice of A"(V*),.

Suppose that Vi, V5 are oriented n-dimensional vector spaces, and let A : Vi — V4
be a bijective linear map.

Definition 6.26. The map A is orientation preserving if
weAN' (V) = A'we A" (V). (6.76)

Suppose that V3 is also an oriented n-dimensional vector space, and let B : Vo — V3
be a bijective linear map. If A and B are orientation preserving, then BA is also
orientation preserving.

Finally, let us generalize the notion of orientation to orientations of manifolds.
Let X C RY be an n-dimensional manifold.

Definition 6.27. An orientation of X is a function on X which assigns to each point
p € X an orientation of T,,X.
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We give two examples of orientations of a manifold:

Example 1: Let w € A"(X), and suppose that w is nowhere vanishing. Orient X
by assigning to p € X the orientation of T, X for which w, € A™(7T;X),.

Example 2: Take X = U, an open subset of R”, and let

w=dr; N\ Ndx,. (6.77)

Define an orientation as in the first example. This orientation is called the standard
orientation of U.

Definition 6.28. An orientation of X is a C* orientation if for every point p € X,
there exists a neighborhood U of p in X and an n-form w € 2"(U) such that for all
points ¢ € U, w, € A™(T;X) .

From now on, we will only consider C*° orientations.

Theorem 6.29. If X is oriented, then there exists w € Q"(X) such that for all
peEX,weA(TiX),.

Proof. For every point p € X, there exists a neighborhood U, of p and an n- form
w®) € Q"(U,) such that for all ¢ € U, ('), € A"(T35X).

Take p;, i = 1,2,..., a partition of unity subordinate to Y = {U, : p € X}. For
every i, there exists a point p such that p; € Cg°(U,). Let

w() U,
D (6.78)
0 on the X —U,.

Since the p;’s are compactly supported, w; is a C* map. Let

w= Zwi. (6.79)

One can check that w is positively oriented at every point. O]

Definition 6.30. An n-form w € Q"(X) with the property hypothesized in the above
theorem is called a volume form.

Remark. If wi,wy are volume forms, then we can write wy = fw;, for some f €
C>®(X) (where f # 0 everywhere). In general, f(p) > 0 because (wi),, (w2), €
A™M(T;X ). So, if wy,wy are volume forms, then wy = fw, for some f € C*(X) such
that f > 0.

Remark. Problem #6 on the homework asks you to show that if X is orientable and
connected, then there are exactly two ways to orient it. This is easily proved using
the above Remark.
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Suppose that X C R" is a one-dimensional manifold (a “curve”). Then 7,X is
one-dimensional. We can find vectors v, —v € T,,X such that ||v|| = 1. An orientation
of X is just a choice of v or —v.

Now, suppose that X is an (n — 1)-dimensional manifold in R™. Define

N X ={veT,R":v L wforalweT,X}. (6.80)

Then dim N, X = 1, so you can find v, —v € N, X such that ||[v|| = 1. By Exercise #5
in section 4 of the Multi-linear Algebra Notes, an orientation of 7, X is just a choice
of v or —uv.

Suppose X, Xy are oriented n-dimensional manifolds, and let f : X; — X5 be a
diffeomorphism.

Definition 6.31. The map f is orientation preserving if for every p € X,
dfp : Tle — TqXQ (681)
is orientation preserving, where ¢ = f(p).

Remark. Let wy be a volume form on X,. Then f is orientation preserving if and
only if f*ws = wq is a volume form on Xj.

We look at an example of what it means for a map to be orientation preserving.
Let U,V be open sets on R™ with the standard orientation. Let f : U — V be a
diffeomorphism. So, by definition, the form

dry A -+ ANdxy, (6.82)

is a volume form of V. The form

Ofi
f*dxl/\~~/\dxn:det[ f}dxl/w'-/\dxn (6.83)
an
is a volume form of U if and only if
Ofi
det [ J } > 0, (6.84)
8:15]-

that is, if and only if f is orientation preserving in our old sense.
Now that we have studied orientations of manifolds, we have all of the ingredients
we need to study integration theory for manifolds.
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Lecture 35

Before moving on to integration, we make a few more remarks about orientations.
Let X,Y be oriented manifolds. A diffeomorphism f : X — Y is orientation
preserving if for every p € X, the map

df, : T,X — T,Y (6.85)

is orientation preserving, where ¢ = f(p).
Let V be open in X, let U be open in R", and let ¢ : U — V be a parameterization.

Definition 6.32. The map ¢ is an oriented parameterization if it is orientation pre-
serving.

Suppose ¢ is orientation reversing. Let A : R™ — R"™ be the linear map defined by
Az, .. ) = (—21, 29, ..., Tp). (6.86)

The map A is orientation reversing. Let U’ = A~}(U), and define ¢/ = ¢go A : U’ — V.
Both ¢ and A are orientation reversing, so ¢’ is orientation preserving.
Thus, for every point p € X, there exists an oriented parameterization of X at p.

6.7 Integration on Manifolds
Our goal for today is to take any w € Q7(X) and define

/w. (6.87)
X

First, we consider a special case:

Let ¢ : U — V be an oriented parameterization. Let U be open in R", and let V'
be open in X. Take any w € Q?(V). Then

LWILW% (6.88)

where ¢*w = f(x)dxy A -+ A dx,, where f € C°(U) and

wa:éf (6.89)

Claim. The above definition for [w does not depend on the choice of oriented pa-
rameterization ¢@.
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Proof. Let ¢; : U; — V, i = 1,2, be oriented parameterizations. Let w € Q(V; NV3).
Define

Uip = o1 (VinVa), (6.90)
Uza = 3 (Vi N TA), (6.91)

which are open sets in R".
Both ¢, and ¢, are diffeomorphisms, and we have the diagram

VinVy ——= Vinh
qﬂ @T (6.92)

U1,2 L U2,1-

Therefore, f = ¢y ' o ¢ is a diffeomorphism, and ¢; = ¢, o f. Integrating,

1w = Prw
Uy Ui,2

_ / (0 f)'w (6.93)
Ui,2

= [ [(¢w).

Ui,

Note that f is orientation preserving, because ¢; and ¢ are orientation preserving.
Using the change of variables formula,

[T = P
Ui Uz,1

(6.94)

= Paw.
Uz

So, for all w € Q2 (Vi N'V3),

/ w= [ ¢jw= | ¢sw :/ w. (6.95)
1% Uy Ua Va
[

Above, we showed above how to take integrals over open sets, and now we gener-
alize.
To define the integral, we need the following two inputs:

1. a set of oriented parameterizations ¢; : U; — V;, i = 1,2,..., such that X =

UV,
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2. a partition of unity p; € C3°(V;) subordinate to the cover {V;}.

Definition 6.33. Let w € Q7(X). We define the integral

/X wzg /V P, (6.96)

One can check various standard properties of integrals, such as linearity:

/w1+w2:/w1+/w2. (697)
X X X

We now show that this definition is independent of the choice of the two inputs
(the parameterizations and the partition of unity).
Consider two different inputs:

1. oriented parameterizations ¢} : U; — V/, j=1,2,..., such that X = J V],
2. a partition of unity p} € C5°(V}) subordinate to the cover {V}.
Then,

:Z / pipiw (6.98)
Vi

Summing over %,

ZZ: /V piw =3 /V - pire

pELT (6.99)

ZZ/,péwa
J J

where the first term equals the last term by symmetry. Therefore, the integral f w is
independent of the choices of these two inputs.
Let X C RY be an oriented connected n-dimensional manifold.

Theorem 6.34. For any w € Q2 (X), the following are equivalent:
1. fX w =0,
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2. we dQHX).

Proof. This will be a five step proof:
Step 1: The following lemma is called the Connectivity Lemma.

Lemma 6.35. Given p,q € X, there exists open sets Wj, 7 =0,..., N+1, such that
each W; is diffeomorphic to an open set in R", and such thatp € Wy, ¢ € W41, and
WinN Wi # ¢.

Proof Idea: Fix p. The points ¢ for which this is true form an open set. The points
q for which this isn’t true also form an open set. Since X is connected, only one of
these sets is in X. O

Step 2: Let wy,wy € QF(X). We say that wy ~ wy if

/XMZ/XWQ' (6.100)

W1~ Wy = w) —wy € dATHX). (6.101)

We can restate the theorem as

Step 3: It suffices to prove the statement (6.101) for w; € Q2(V) and wy € Q2(V'),
where V, V' are diffeomorphic to open sets in R".
Step 4: We use a partition of unity

Lemma 6.36. The theorem is true if V =1V".

Proof. Let ¢ : U — V be an orientation preserving parameterization. If w; ~ wy,

then
/ Pwy = / P wa, (6.102)

which is the same as saying that
P*wy — ¢*wy € dQH(U), (6.103)

which is the same as saying that
Wy — wy € dAHV). (6.104)
O

Step 5: In general, by the Connectivity Lemma, there exists sets W;, 7 =0,..., N+
1, such that each W; is diffeomorphic to an open set in R™. We can choose Wy =V
and Wy, =V and W; N W1 # ¢ (where ¢ here is the empty set).

We can choose p; € QF(W; N Wi4q) such that

C:/lezf“oz"':/“N+1:/,”2' (6.105)
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So,
Wy ~ g ~ -~ UN Y Wa. (6106)

We know that pg—w; € dQ" ! and wy—pny1 € dQZfl Also, each difference w; —w; 1 €
dQn—1. Therefore, w; — wy € dQ7™1. O

6.8 Degree on Manifolds

Suppose that X, Xy are oriented n-dimensional manifolds, and let f : X; — X5 be
a proper map (that is, for every compact set A C X, the set pre-image f~1(A) is
compact). It follows that if w € QF(X5), then f*w € QF(X,).

Theorem 6.37. If Xy, Xy are connected and f : X1 — X, is a proper C> map, then
there exists a topological invariant of f (called the degree of f) written deg(f) such
that for every w € QF(X3),

ffw= deg(f)/ w. (6.107)
X1 Xo
Proof. The proof is pretty much verbatim of the proof in Euclidean space. m

Let us look at a special case. Let ¢; : U — V be an oriented parameterization,
and let V7 be open in X;. Let f : X; — X5 be an oriented diffeomorphism. Define
¢o = [ o ¢1, which is of the form ¢, : U — V3, where Vo = f(V;). Notice that ¢ is
an oriented parameterization of V5.

Take w € Q2 (V,) and compute the integral

mfw=Lﬂﬁw
= /(fo¢1)*w (6.108)

U
L@u

The n-form w is compactly supported on V5, so

lAﬁwzé@w
:/XQW'

ffw= [ flw. (6.110)
X1 141

(6.109)

On the other hand,
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Combining these results,
/ ffw= / w. (6.111)
X X

deg(f) = 1. (6.112)

Therefore,

So, we have proved the following theorem, which is the Change of Variables the-
orem for manifolds:

Theorem 6.38. Let X1, Xy be connected oriented n-dimensional manifolds, and let
f: X1 — Xy be an orientation preserving diffeomorphism. Then, for all w € Q7 (X5),

o = . 6.113
Re /Xf’ (6.113)
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Lecture 36

The first problem on today’s homework will be to prove the inverse function
theorem for manifolds. Here we state the theorem and provide a sketch of the proof.
Let X,Y be n-dimensional manifolds, and let f : X — Y be a C>* map with

f(p) =p1.

Theorem 6.39. If df, : T,X — T,,Y is bijective, then f maps a neighborhood V of
p diffeomorphically onto a neighborhood Vi of p;.

Sketch of proof: Let ¢ : U — V be a parameterization of X at p, with ¢(q) = p.
Similarly, let ¢1 : U; — V; be a parameterization of Y at py, with ¢1(q1) = p1-
Show that we can assume that f : V' — V; (Hint: if not, replace V by VN f=1(17)).
Show that we have a diagram

v L.
ﬂ mT (6.114)
U —— U,
which defines g,
g=¢; ofod, (6.115)
9(a) = ¢ (6.116)
So,
(dg), = (dgzﬁl);ll o df, o (dg),. (6.117)
Note that all three of the linear maps on the r.h.s. are bijective, so (dg), is a bijection.
Use the Inverse Function Theorem for open sets in R"™. ]

This ends our explanation of the first homework problem.
Last time we showed the following. Let X, Y be n-dimensional manifolds, and let
f: X — Y be a proper C> map. We can define a topological invariant deg(f) such

that for every w € Q2 (Y),
/ ffw = deg(f)/ w. (6.118)
b Y

There is a recipe for calculating the degree, which we state in the following theo-
rem. We lead into the theorem with the following lemma.
First, remember that we defined the set C of critical points of f by
peCy < df, : T,X — T,Y is not surjective, (6.119)

where ¢ = f(p).
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Lemma 6.40. Suppose that ¢ € Y — f(Cy). Then f~'(q) is a finite set.

Proof. Take p € f~*(q). Since p ¢ Cy, the map df,, is bijective. The Inverse Function
Theorem tells us that f maps a neighborhood U, of p diffeomorphically onto an open
neighborhood of ¢. So, U, N f~!(q) = p.

Next, note that {U, : p € f~*(¢)} is an open covering of f~'(q). Since f is
proper, f(g) is compact, so there exists a finite subcover U,,, ..., U,,. Therefore,
fHa) = {p1,- ... pn} O

The following theorem gives a recipe for computing the degree.

Theorem 6.41.

N
deg(f) => oy, (6.120)
i=1
where
+1 if dfy, 1 T, X — T,Y is orientation preserving,
e {—1 if dfy, T, X — T,Y is orientation reversing, (6.121)
Proof. The proof is basically the same as the proof in Euclidean space. O

We say that ¢ € Y is a regular value of f if ¢ ¢ f(Cy). Do regular values exist?
We showed that in the Euclidean case, the set of non-regular values is of measure zero
(Sard’s Theorem). The following theorem is the analogous theorem for manifolds.

Theorem 6.42. If qo € Y and W is a neighborhood of qo in'Y, then W — f(Cy) is
non-empty. That is, every neighborhood of qy contains a regular value (this is known
as the Volume Theorem).

Proof. We reduce to Sard’s Theorem.

The set f~1(qo) is a compact set, so we can cover f~!(go) by open sets V; C X, i =
1,..., N, such that each V; is diffeomorphic to an open set in R".

Let W be a neighborhood of ¢ in Y. We can assume the following:

1. W is diffeomorphic to an open set in R™,
2. f7Y(W) c UV, (which is Theorem 4.3 in the Supp. Notes),
3. f(Vi) CW (for, if not, we can replace V; with V; N f~*(1W)).

Let U and the sets U;, © = 1,..., N, be open sets in R". Let ¢ : U — W and the
maps ¢; : U; — V; be diffeomorphisms. We have the following diagram:

v, LW
¢Z~£T ¢>,gT (6.122)
U, 2 U

)
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which define the maps g;,
Gi=¢ 1o fod. (6.123)
By the chain rule, z € C,, = ¢;(x) € Cy, so

$i(Cy, = Cr N V. (6.124)
So,
¢(6:(Cy.)) = fF(CrN V). (6.125)
Then,
FCnnw =Jo(g:(Cy)). (6.126)
Sard’s Theorem tells us that ¢;,(Cy,) is a set of measure zero in U, so
U - Ugi(C’gi) is non-empty, so (6.127)
W — f(Cy) is also non-empty. (6.128)
In fact, this set is not only non-empty, but is a very, very “full” set. O

Let fo, f1 : X — Y be proper C* maps. Suppose there exists a proper C*° map
F: X x[0,1] = Y such that F(z,0) = fo(z) and F(z,1) = fi(z). Then

deg(fo) = deg(f1)- (6.129)

In other words, the degree is a homotopy. The proof of this is essential the same as
before.

6.9 Hopf Theorem

The Hopf Theorem is a nice application of the homotopy invariance of the degree.
Define the n-sphere
S*={veR" ||| =1} (6.130)

Hopf Theorem. Let n be even. Let f : 8™ — R be a C* map. Then, for some
ve S,
f(v) = Av, (6.131)

for some scalar \ € R.

Proof. We prove the contrapositive. Assume that no such v exists, and take w = f(v).
Consider w — (v, w)v = w — wy. It follows that w — w; # 0.
Define a new map f : S™ — S™ by

) — o 1(@)
) = 1) = (o, 7@
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Note that (w —w;) L v, so f(v) L v.
Define a family of functions

fooSm—Sm (6.133)
fi(v) = (cost)v + (sint)w, (6.134)
where @ = f(v) has the properties ||@|| =1 and @ L v.
We compute the degree of f;. When t =0, f; = id, so
deg(fi) = deg(fo) = 1. (6.135)
When t = 7, fi(v) = —v. But, if n is even, a map from S™ — S™ mapping v — (—v)
has degree —1. We have arrived at a contradiction. O]
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Lecture 37

6.10 Integration on Smooth Domains

Let X be an oriented n-dimensional manifold, and let w € Q7(X). We defined the

integral
/ W, (6.136)
b's

/D o, (6.137)

for some subsets D C X. We generalize, but only to very simple subsets called smooth
domains (essentially manifolds-with-boundary). The prototypical smooth domain is
the half plane:

but we can generalize the integral

H" = {(x1,...,2,) € R": 2y < 0}. (6.138)
Note that the boundary of the half plane is
Bd (H") = {(z1,...,2,) € R" : 21 = 0}. (6.139)

Definition 6.43. A closed subset D C X is a smooth domain if for every point
p € Bd (D), there exists a parameterization ¢ : U — V of X at p such that ¢(U N
H") =V ND.

Definition 6.44. The map ¢ is a parameterization of D at p.

Note that ¢ : U NH" — V N D is a homeomorphism, so it maps boundary points
to boundary points. So, it maps U’ = U N Bd (H") onto V® =V N Bd (D).

Let ¢ = ¢|U®. Then ¢ : U® — V? is a diffeomorphism. The set U’ is an open set
in R"~1 and v is a parameterization of the Bd (D) at p. We conclude that

Bd (D) is an (n — 1)-dimensional manifold. (6.140)

Here are some examples of how smooth domains appear in nature:
Let f: X — R be a C*® map, and assume that f~'(0) N C; = ¢ (the empty set).
That is, for all p € f71(0), df, # 0.

Claim. The set D = {x € X : f(x) <0} is a smooth domain.

Proof. Take p € Bd (D), so p = f~1(0). Let ¢ : U — V be a parameterization of X
at p. Consider the map g = fo¢: U — R. Let ¢ € U and p = ¢(q). Then

(dgq) = dfp o (d),. (6.141)

We conclude that dg, # 0.
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By the canonical submersion theorem, there exists a diffeomorphism ¢ such that
g o1 = m, where 7 is the canonical submersion mapping (z,...,z,) — z;. We can
write simply g o ¥ = x;. Replacing ¢ = ¢olq by ¢ = Gnew = @o1q © ¥, we get the
new map ¢ : U — V which is a parameterization of X at p with the property that
fodo(xy,...,z,) =x1. Thus, » maps H* N U onto DNV. O]

We give an example of using the above claim to construct a smooth domain. Let
X =R", and define
flx)=1— (a7 +-- +22). (6.142)

By definition,
f(x) <0 <= =z € B", (6.143)

where B" = {x € R" : ||z|| < 1} is the “unit ball.” So, the unit ball B™ is a smooth
domain.

We now define orientations of smooth domains. Assume that X is oriented, and
let D be a smooth domain. Let ¢ : U — V be a parameterization of D at p.

Definition 6.45. The map ¢ is an oriented parameterization of D if it is an oriented
parameterization of X.

Assume that dim X = n > 1. We show that you can always find an oriented
parameterization.

Let ¢ : U — V be a parameterization of D at p. Suppose that ¢ is not oriented.
That is, as a diffeomorphism ¢ is orientation reversing. Let A : R — R"™ be the map

Alxy, .o ) = (T, oy T, —Tp). (6.144)

Then A maps H" — H", and ¢ o A is orientation preserving. So, ¢ o A is an oriented
parameterization of D at p.
Now, let ¢ : U — V be an oriented parameterization of D at p. We define

Ub=UNBd(H"), (6.145)
VP =V NnBd(D), (6.146)
b = ¢|U”, (6.147)

where 1 is a parameterization of Bd (D) at p.
We oriented Bd (D) at p by requiring ¢ to be an oriented parameterization. We
need to check the following claim.

Claim. The definition of oriented does not depend on the choice of parameterization.

Proof. Let ¢; : U; — Vi, ©» = 1,2, be oriented parameterizations of D at p. Define

Uiz = 1 (ViNVa), (6.148)
Uza = 3" (Vi N V), (6.149)
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from which we obtain the following diagram:

VinVvy, ——=Vinl,
‘“T @T (6.150)

g
U1,2 EE— U2,1,

which defines a map g. By the properties of the other maps ¢1, ¢, the map ¢ is an
orientation preserving diffeomorphism of U; 5 onto Uy ;. Moreover, g maps

Ui, =Bd(H") N U, (6.151)
onto

Uy, = Bd (H") N Vs, (6.152)
Let h = g|Uf72, so h: Uf2 — Ug,l. We want to show that h is orientation preserving.

To show this, we write g and h in terms of coordinates.

9g=1(91,---,9,), where g; =gi(z1,...,2,). (6.153)
So,
gi(x1,...,2,) <0 if x1 <O,
g maps H" to H" <= ¢ ¢1(z1,...,2,) >0 if z; >0, (6.154)
910,29, ..., 2,) =0
These conditions imply that

0
8—xlg1(0, o, ... ,.’L’n) Z 0,
{ %gl(O,xz,...,xn) =0, fori # 1. (6.155)
The map h in coordinates is then
h=h(xy,...,x,
(2 ) (6.156)
=(g(0, 29, ..., %n)s -, Gn-1(0,22,...,2,)),
which is the statement that h = g| Bd (H").
At the point (0,z3,...,2,) € U},
991
G0 . 0
D i (6.157)
g=1 . : :
: Dh
*

The matrix Dg is an n X n block matrix containing the (n — 1) X (n — 1) matrix Dh,

because
Ohi _ 0gi
axj a axj

(0,29, ...,2,), 1,7 > 1. (6.158)
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Note that
det(Dg) = 22X det(Dh). (6.159)

We know that the L.h.s > 0 and that g—ﬁ > 0, so det(Dh) > 0. Thus, the map
h: Uf2 — é”l is orientation preserving.

To repeat, we showed that in the following diagram, the map h is orientation
preserving:

Vi NV, N Bd (D) —— Vi NV, Bd (D)
o o] (6.160)
Uf,z _h Uil.

We conclude that 1 is orientation preserving if and only if 1, is orientation preserv-
ing. O
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Lecture 38

We begin with a review from last time.

Let X be an oriented manifold, and let D C X be a smooth domain. Then
Bd (D) =Y is an oriented (n — 1)-dimensional manifold.

We defined integration over D as follows. For w € Q7(X) we want to make sense

of the integral
/ w. (6.161)
D
We look at some special cases:

Case 1: Let p € Int D, and let ¢ : U — V be an oriented parameterization of X
at p, where V C Int D. For w € Q% (X), we define

/Dw:/vwz/Ugﬁ*w: - O'w. (6.162)

This is just our old definition for
/ o (6.163)
v

Case 2: Let p € Bd (D), and let ¢ : U — V be an oriented parameterization of D
at p. That is, ¢ maps U NH" onto V N D. For w € Q2(V), we define

/ w= O'w. (6.164)
D Hn

We showed last time that this definition does not depend on the choice of parameter-
ization.

General case: For each p € Int D, let ¢ : U, — V,, be an oriented parameterization
of X at p with V,, C Int D. For each p € Bd (D), let ¢ : U, — V), be and oriented

parameterization of D at p. Let

U=> U, (6.165)

peED

where the set i = {U, : p € D} be an an open cover of U. Let p;, i =1,2,..., be a
partition of unity subordinate to this cover.

Definition 6.46. For w € Q7(X) we define the integral

/Dw:zi:/Dpiw. (6.166)

Claim. The r.h.s. of this definition is well-defined.
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Proof. Since the p;’s are a partition of unity, there exists an N such that

supp w Nsupp p; = ¢, (6.167)

for all ¢ > N.

Hence, there are only a finite number of non-zero terms in the summand. More-
over, each summand is an integral of one of the two types above (cases 1 and 2), and
is therefore well-defined. O

Claim. The l.h.s. of the definition does not depend on the choice of the partition of
unity p;.

Proof. We proved an analogous assertion about the definition of [ w a few lectures
ago, and the proof of the present claim is exactly the same. O

6.11 Stokes’ Theorem
Stokes’ Theorem. For all w € Q" (X))

/dw—/ w. (6.168)
D Bd (D)

Proof. Let p;, i =1,2..., be a partition of unity as defined above. Replacing w with
> piw, it suffices to prove this for the two special cases below:

Case 1: Let p € Int D, and let ¢ : U — V be an oriented parameterization of X
at p with V CInt D. If w € Q2 1(V), then

/D do= [ g / g =0, (6.169)

Case 2: Let p € Bd(D), and let ¢ : U — V be an oriented parameterization
of D at p. Let U® = UNBd(H"), and let V® = V N Bd (D). Define v : ¢|U’ so
¥ : U’ — V'’ is an oriented parameterization of Bd (D) at p. If w € Q?~*(V), then

O'w = Z filzy, .. xp)doy A A c@ A ANdx,. (6.170)
What is ¢*w? Let ¢ : R"! — R™ be the inclusion map mapping Bd (H") — R".
The inclusion map ¢ maps (zs,...,z,) — (0,z9,...,2,). Then ¢ o1 =1, so
n —~ 6.171
:L*(Zfidxl/\---/\dxi/\---/\dxn). ( )
i=1
But,
dry = difxy =0, since *z; = 0. (6.172)
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So,
V'w =" fidrag A Ndxy,

6.173
= f1(0, 29, ..., x,)dxa A -+ - N day. ( )
Thus,
/ W= Yw = f1(0, 29, ..., xp)dzs . . . dxy,. (6.174)
Bd (D) Rn—1 Rn—1

On the other hand,

/ dw = ¢ dw = / do*w. (6.175)
D HTL n

One should check that
do*w = (Z fidxy N NTT; N N dxn>

6.176
— (Z(—l)i‘l%) dzy A -+ Aday,. (0470

ofi

ox;
can be integrated by parts, integrating first w.r.t. the ith variable. For ¢ > 1, this is
the integral

So, each summand

dxy ... dz, (6.177)

< If; _
——dx; = fi(x1,..., 2|52
o O, Jilz )l (6.178)
=0.
For ¢ = 1, this is the integral
<0
h ——(x1,...,xp)dx; = f1(0,29,...,2,). (6.179)
0x1
Thus, the total integral of ¢*dw over H" is
/fl(O, To,y ..., Ty)dxs . .. dT,. (6.180)
We conclude that
/ dw = / w. (6.181)
D Bd (D)
]

We look at some applications of Stokes” Theorem.
Let D be a smooth domain. Assume that D is compact and oriented, and let
Y = Bd (D). Let Z be an oriented n-manifold, and let f:Y — Z be a C* map.

Theorem 6.47. If f extends to a C* map F : D — Z, then
deg(f) = 0. (6.182)

Corollary 9. The Brouwer fized point theorem follows from the above theorem.
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