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4 LECTURE NOTES FOR 18.102, SPRING 2009 

Lecture 1. Tuesday, 3 Feb. 

Linear spaces, metric spaces, normed spaces. Banach spaces. Examples – Eu­
clidean spaces, continuous functions on a closed interval – C0([0, 1]) with supremum 
norm. The (Riemannian) L1 norm, outline that this is not complete on C0([0, 1]). 
Brief description of l2 – This is Hilbert space, but not explained. 

What is it all for? Main aims:- To be able to carry out ‘standard’ constructions in 
(linear) functional analysis: 

Abstract Hilbert space – one in each dimension 
Concrete Hilbert space – Many, such as L2([0, 1]) 
Example of a theorem:- The Dirichlet problem. Let V : [0, 1] −→ R be a 
real-valued function. We are interested in ‘oscillating modes’ on the interval; 
something like this arises in quantum mechanics for instance. Namely we want 
to know about functions u(x) – twice continuously differentiable on [0, 1] which 
satisfy the differential equation 

d2u
(1.1) − 

dx2 
(x) + V (x)u(x) = λu(x) 

where λ is an ‘unknown’ constant – that is we want to know which λ’s can 
occur. Well, of course all λ’s can occur with u ≡ 0 but this is the ‘trivial 
solution’ which will always be there for such an equation. What other solutions 
are there? Well, there is an infinite sequence of λ’s for which there is a non­
trivial solution of (1.1) λj ∈ R – they are all real no non-real complex λ’s can 
occur. For each of these there is at least one (and maybe more) ‘independent’ 
solution uj . We can say a lot more about everything here but one main aim of 
this course is to get at least to this point. 

Now, in fact (1.1) is just the eigenvalue equation. What we are dealing with here is 
an ‘infinite matrix’. This is not obvious, and in fact is not a very good way of 
looking at things (there was such a matrix approach to quantum mechanics in 
the early days but it was replaced by the sort of ‘operator’ theory on Hilbert 
space that we will use here.) Still, we are in some sense dealing with infinite 
dimensional matrices. One of the crucial differences between infinite and finite 
dimensional settings is that topology is encountered. This is enshrined here in 
the notion of a normed linear space 

Linear space:- Should I break out the axioms? It is a space V in which we can add 
elements and multiply by scalars with rules very similar to the basic examples 
of Rn or Cn . Note that for us the ‘scalars’ are either the real numbers of the 
complex numbers – usually the latter. Let’s be neutral and denote by K either 
R or C but of course consistently. Then our set V – the set of vectors with 
which we will deal, comes with two ‘laws’. These are maps 

(1.2) + : V × V −→ V, : K × V −→ V. · 

which we denote not by +(v, w) and (s, v) but by v + w and sv. Then we ·
impose the axioms of a vector space – look them up! These are commutative 
group axioms for + axioms for the action of K and the distributive law. 

Our examples: 
The ‘trivial’ case of a finite dimensional vector space. 
The lp spaces. These are spaces of sequences – the first problem set is all 
about them. Thus l2 – which is a Hilbert space – consists of all the sequences 
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a : N −→ C also denoted {aj }∞ where aj = a(j), such that j=1 

∞

(1.3) |aj |2 < ∞. 
j=1 

Seriously non-trivial examples such as C([0, 1]) the space of continuous func­
tions on [0, 1] (say with complex values). 

All these vector spaces carry norms, and that is what we want to talk about for 
most of the semester. 

Definition 1. A norm on a vector space V is a function 

(1.4) � · � : V −→ [0, ∞) 

which satisfies the three properties: 
(1) �v� = 0 iff v = 0. 
(2) �tv� = |t|�v� for all t ∈ K and v ∈ V. 
(3) Triangle inequality. �v + w� ≤ �v� + �w� for all v, w ∈ V. 

Then show that d(v, w) = �v − w� is a metric on V. 
It follows that all the notions from 18.100 come into play – open sets, balls, closed 

sets, convergence of sequences, compact sets, connected sets, complete metric 
spaces. We will use them all! 

Definition 2. A normed space which is complete with respect to the induced metric 
is called a Banach space. 

I then discussed the supremum norm on C([0, 1]); 

(1.5) = sup u(x) .�u�∞ 
x∈[0,1] 

| |

I said, but did not prove, that it this gives a Banach space. 
I also disussed the L1 norm on C([0, 1]) : � 1 

(1.6) �u�L1 = |u(x)|dx 
0 

and indicated why it is not complete. This is basically why we need to study 
the Lebesgue integral. 

One might ask ‘is the space of Riemann integrable functions on [0, 1] complete with 
respect to the L1 norm’ – indeed someone did. The answer is that �u�L1 is 
not even a norm on the space of Riemann integable functions. Namely it is 
only a ‘seminorm’ – the second two conditions are fine but there are non-zero 
functions with integral zero. So, the question is not quite precise, which is 
why I did not talk about it. One the other hand one can fiddle with the space 
(take a quotient) so that one gets a norm and then it is not complete. So the 
morally correct answer is NO, it is not a Banach space and this is true for a 
better (or worse) reason than it simply not being a normed space in the first 
place! We will get to this. 
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Problem set 1, Due 11AM Tuesday 10 Feb. 

Full marks will be given to anyone who makes a good faith attempt to answer 
each question. The first four problems concern the ‘little L p’ spaces lp. Note that 
you have the choice of doing everything for p = 2 or for all 1 ≤ p < ∞. 

Problem 1.1 Write out a proof (you can steal it from one of many places but at 
least write it out in your own hand) either for p = 2 or for each p with 1 ≤ p < ∞
that 

∞

lp = {a : N −→ C; |aj |p < ∞, aj = a(j)}
j=1 

is a normed space with the norm ⎛ ⎞ 1 

∞ p 

p�a�p = ⎝ |aj | ⎠ . 
j=1 

This means writing out the proof that this is a linear space and that the three 
conditions required of a norm hold. 

Problem 1.2 The ‘tricky’ part in Problem 1.1 is the triangle inequality. Suppose 
you knew – meaning I tell you – that for each N ⎛ ⎞ 1 

N p 

p⎝ |aj | ⎠ is a norm on CN 

j=1 

would that help? 
Problem 1.3 
Prove directly that each lp as defined in Problem 1.1 – or just l2 – is complete, 

i.e. it is a Banach space. At the risk of offending some, let me say that this means 
showing that each Cauchy sequence converges. The problem here is to find the limit 
of a given Cauchy sequence. Show that for each N the sequence in CN obtained by 
truncating each of the elements at point N is Cauchy with respect to the norm in 
Problem 1.2 on CN . Show that this is the same as being Cauchy in CN in the usual 
sense (if you are doing p = 2 it is already the usual sense) and hence, this cut-off 
sequence converges. Use this to find a putative limit of the Cauchy sequence and 
then check that it works. 

Problem 1.4 
Consider the ‘unit sphere’ in lp – where if you want you can set p = 2. This is 

the set of vectors of length 1 : 

S = {a ∈ lp; �a�p = 1}. 
(1) Show that S is closed. 
(2) Recall the sequential (so not the open covering definition) characterization 

of compactness of a set in a metric space (e.g. by checking in Rudin). 
(3) Show that	 S is not compact by considering the sequence in lp with kth 

element the sequence which is all zeros except for a 1 in the kth slot. Note 
that the main problem is not to get yourself confused about sequences of 
sequences! 

Problem 1.5 Show that the norm on any normed space is continuous. 




