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Lecture 7. Thursday, Feb 26 

So, what was it with my little melt-down? I went too cheap on the monotonicity 
theorem and so was under-powered for Fatou’s Lemma. In my defense, I was trying 
to modify things on-the-fly to conform to how we are doing things here. I should 
also point out that at least one person in the audience made a comment which 
amounted to pointing out my error. 

So, here is something closer to what I should have said – it is not far from what 
I did say of course. 

Proposition 12. [Montonicity again] If fj ∈ L1(R) is a monotone sequence, either 
fj (x) ≥ fj+1(x) for all x ∈ R and all j or fj (x) ≤ fj+1(x) for all x ∈ R and all j, 
and fj is bounded then 

(7.1)	 {x ∈ R; lim fj (x) is finite} = R \ E 
j→∞ 

where E has measure zero and 

f = lim fj (x) a.e. is an element of L1(R) 

(7.2)	
j→∞ � 

with lim f − fj = 0. 
j→∞ 

| | 

Moral of the story – drop the assumption of positivity and replace it with the bound 
on the integral. In the approach through measure theory this is not necessary 
because one has the concept of a measureable, non-negative, function for which the 
integral ‘exists but is infinite’ – we do not have this. 

Proof. Since we can change the sign of the fi (now) it suffices to assume that the fi 

are monotonically increasing. The sequence of integrals is therefore also montonic 
increasing and, being bounded, converges. Thus we can pass to a subsequence 
gi = fni with the property that 

(7.3) |gj − gj−1| = gj − gj−1 < 2−j ∀ j > 1. 

This means that the series h1 = g1, hj = gj − gj−1, j > 1, is absolutely summable. 
So we know for the result last time that it converges a.e., that the limit, f, is 
integrable and that � � j � � 
(7.4)	 f = lim hk = lim gj = lim fj . 

j→∞ 
k=1 

j→∞ n→∞ 

In fact, everywhere that the series hj (x), which is to say the sequence gk(x), 
j 

converges so does fn(x), since the former is a subsequence of the latter which 
is monotonic. So we have (7.1) and the first part of (7.2). The second part, 
corresponding to convergence for the equivalence classes in L1(R) follows from 
monotonicity, since 

(7.5)	 |f − fj | = f − fj → 0 as j →∞. 
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Now, to Fatou’s Lemma. This really just takes the monotonicity result and 
applies it to a general sequence of integrable functions with bounded integral. You 
should recall – as I did – that the max and min of two integrable functions is 
integrable and that 

(7.6)	 min(f, g) ≤ min( f, g). 

Lemma 3. [Fatou]. Let fj L1(R) be a sequence of non-negative (so real-valued 
integrable) functions such that fj is bounded above in R, then 

f(x) = lim inf fn(x) exists a.e., f ∈ L1(R) and 
n→∞

(7.7)	 � � 
lim inf fn ≤ lim inf fn. 

Proof. You should remind yourself of the properties of liminf as necessary! Fix k 
and consider 

(7.8)	 Fk,n = min fp
1(R) 

k≤p≤k+n 
(x) ∈ L

as discussed briefly above. Moreover, this is a decreasing sequence, as n increases, 
because the minimum is over an increasing set an all elements are non-negative. 
Thus the integrals are bounded below by 0 so the monotonicity result above applies 
and shows that 

(7.9) gk(x) = inf fp(x) ∈ L1(R), gk ≤ fn ∀ n ≥ k. 
p≥k 

Note that for a decreasing sequence of non-negative numbers the limit exists every­
where and is indeed the infimum. Thus in fact, 

(7.10)	 gk ≤ lim inf fn. 

Now, let k vary. Then, the infimum in (7.9) is over a set which decreases as k 
increases. Thus the gk(x) are increasing. The integral is always bounded by one of 
the fn� and hence is bounded above independent of k since we assumed a bound 
on the fn’s. So, now we can apply the monotonicity result again to see that 

f(x) = lim gk(x) exists a.e and f ∈ L1(R) has 
(7.11)	

k→∞ � � 
f ≤ lim inf fn. 

Since f(x) = lim inf fn(x), by definition of the latter, we have proved the Lemma. 

Now, we apply Fatou’s Lemma to prove what we are really after:­

Theorem 2. [Lebesgue’s dominated convergence]. Suppose fj ∈ L1(R) is a se­
quence of integrable functions such that 

(7.12) 
∃ h ∈ L1(R) with |fj (x)| ≤ h(x) a.e. and 

f(x) = lim fj (x) exists a.e. � n→∞� 
Then f ∈ L1(R) and f = limn→∞ fn (including the assertion that this limit 
exists). 
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Proof. First, we can assume that the fj are real since the hypotheses hold for its 
real and imaginary parts and together give the desired result. Moroever, we can 
change all the fj ’s to make them zero on the set on which the estimate in (7.12) 
does not hold. Then this bound on the fj ’s becomes 

(7.13)	 −h(x) ≤ fj (x) ≤ h(x) ∀ x ∈ R. 

In particular this means that gj = g − fj is a non-negative sequence of integrable 
functions and the sequence of integrals is also bounded, since (7.12) also implies 
that |fj | ≤ h, so gj ≤ 2 h. Thus Fatou’s Lemma applies to the gj . Since we 
have assumed that the sequence gj (x) converges a.e. to f we know that 

h − f(x) = lim inf gj (x) a.e. and 
(7.14)	 � � � � � 

h − f ≤ lim inf (h − fj ) = h − lim sup fj . 

Notice the change on the right from liminf to limsup because of the sign. 
Now we can apply the same argument to gj

� (x) = h(x) + fj (x) since this is also 
non-negative and has integrals bounded above. This converges a.e. to h(x) + f(x) 
so this time we conclude that 

(7.15)	 h + f ≤ lim inf (h + fj ) = h + lim inf fj . 

In both inequalities (7.14) and (7.15) we can cancel and h and combining them 
we find 

(7.16)	 lim sup fj ≤ f ≤ lim inf fj . 

In particular the limsup on the left is smaller than, or equal to, the liminf on the 
right, for the same real sequence. This however implies that the are equal and that 
the sequence fj converges (look up properties of liminf and limsup if necessary 
...). Thus indeed 

(7.17)	 f = lim fn. 
n→∞ 

Generally in applications it is Lebesgue’s dominated convergence which is used 
to prove that some function is integrable. 

Finally I want to make sure that we agree that L1(R) is a Banach space. Note 
once again that I have used the somewhat non-standard notation 

(7.18) L1(R) = {f : R −→ C; f is integrable.} 

This is a curly ‘L’. We know that f ∈ L1(R) implies that |f | ∈ L1(R) (if you are 
wondering the converse might not be true if f oscillates badly enough). Now, we 
know exactly when the integral of the abolute value vanishes. Namely 

(7.19) N = {f ∈ L1(R); |f | = 0} 

= {f : R −→ C; f(x) = 0 ∀ x ∈ R \ E,	 E of measure zero}. 

Namely, this is the linear space of null functions. We then defined 

(7.20)	 L1(R) = L1(R)/N . 
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This has a non-curly ‘L’ – the notation is by no means standard but the definition 
(7.20) certainly is. Thus the elements of L1(R) are equivalence classes of functions 

(7.21)	 [f ] = f + N , f ∈ L1(R). 

That is, we ‘identify’ to element of L1(R) if (and only if) there difference is null, 
which is to say they are equal off a set of measure zero. Note that the set is not fixed, 
but can depend on the functions. Anyway, for an element of L1(R) the integral of 
the absolute value is well-defined:­

(7.22)	 �[f ]�L1 = |f | 

since the right side is independent of which representative we choose. 

Theorem 3. The function � · �L1 in (7.22) is a norm on L1(R) with respect to 
which it is a Banach space. 

The integral of the absolute value, f is a semi-norm on L1(R) – it satisfies all 
the properties of a norm except that 

| |
|f | = 0 does not imply f = 0, only f ∈ N . 

We are ‘killing’ this problem by taking the quotient. 

Proof. I will not go through the proofs of the norm properties but you should. So, 
the only issue remaining is the completeness of L1(R) with respect to �·}L1 . 

The completeness is a direct consequence of the Theorem in the last lecture on 
absolutely summable series of Lebesgue functions, so remind yourself of what this 
says. Also recall how we showed that if f is integrable, so is |f |. Namely, if fj is an 
absolutely summable series (originally of step functions, now of Lebesgue integrable 
functions) then we defined 

(7.23) g1 = |f1|,	 gj = | fk| − | fk|
k≤j k≤j−1 

and observed that 

(7.24)	 |gj | ≤ |fj | ∀ j. � 
Thus, gj is also absolutely summable and everywhere fj (x) converges, 

j 

(7.25)	 (x) = | fj (x)| → |f(x)| as N →∞. 
j≤N j≤N 

This shows that |f | ∈ L1(R), but more than that since 

(7.26)	 f = lim fj (x) fj .| | 
N→∞ 

| | ≤ 
j 

| |
j≤N 

Roughly speaking this is why we have been using absolutely summable series from 
the beginning. 

So, going back to fj and absolutely summable series in L1(R), in the sense that 
|fj |, we can apply the discussion above to the truncated series starting at point 

j 

N. Namely, the fj for j ≥ N give an absolutely convergent series which sums a.e. 
to 

(7.27)	 f(x) − fj (x) = fj (x). 
j<N j>N 
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Now, applying (7.26) we see that 

(7.28)	 |f(x) − fj (x)| ≤ |fj |. 
j<N j>N 

However, the absolute convergence means that the tail on the right is small with 
N, that is, 

(7.29)	 lim fj = 0. 
N→∞ 

|f − 
j<N 

| 

So, finally it is only necessary to think about L1(R) instead of L1(R). An abso­
lutely summable sequence in Fj in L1(R) is a series of equivalence classes fj + N
where fj ∈ L1(R). The absolutely summability condition is 

(7.30)	 �Fj �L1 = |fj | < ∞ 
j j 

is what we need to start the discussion above. Namely, we have shown that the 
sum a.e. f of the series fj is an element of L1(R) and (7.29) holds. But this just 
means that the equivalenct class F = f + N satisfies 

(7.31)	 lim = lim = 0. 
N →∞ 

�F − 
j<N 

Fj �L1 
N →∞ 

|f − 
j<N 

fj | 

N

Thus, Fj = F in L1(R) which is therefore complete. � 
j=1 

Note that despite the fact that it is technically incorrect, everyone says ‘L1(R) 
is the space of Lebesgue integrable functions’ even though it is really the space 
of equivalence classes of these functions modulo equality almost everywhere. Not 
much harm can come from doing this. 




