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Lecture 10. Tuesday, Mar 10 

All of this is easy to find in the various reference notes and/or books so I will 
keep these notes very brief. 

(1) Bessel’s inequality 
If in a preHilbert space H, ei, i = 1, . . . , N are orthonormal – so (ei, ej ) = 

δij then for any element u ∈ H, set 
N

v = (u, ei)ei then 
i=1 

N(10.1)	 � 
2 2 2�v� = |(u, ei)| ≤ �u�H H , 

i=1 

(u − v) ⊥ ei, i = 1, . . . , N. 

The last statement follows immediately by computing (u, ej ) = (v, ej ) and 
similarly �v�2 can be computed directly. Then the inequality, which is 
Bessel’s inequality, follows from Cauchy’s inequality since from the last 
statement 

(10.2) �v�2 = (v, v) = (v, u) + (v, v − u) = (v, u) = |(v, u)| ≤ �v��u� 
shows �v� ≤ �u�. 

(2) Orthonormal bases: 
Since in the inequality in (10.1) the right side is independent of N it 

follows that if {ei}∞ is a countable orthonormal set then i=1 

∞

(10.3)	 |(u, ei)|2 ≤ �u�2 
H . 

i=1 

From this it follows that the sequence 
n

(10.4)	 vn = (u, ei)ei 

i=1 

is Cauchy since if m > n, 
∞

(10.5) �vn − vm�2 = �(u, ej )|2 ≤ �(u, ej )|2 

n<j≤m j=n+1 

and the right side is small if n is large, independent of m. 

Lemma 5. If H is a Hilbert space – so now we assume completeness – and 
{ei}∞ is an orthonormal sequence then for each u ∈ H, i=1 

∞

(10.6)	 v = (u, ej )ej ∈ H 
j=1 

converges and (u − v) ⊥ ej for all j. 

Proof. The limit exists since the sequence is Cauchy and the space is com­
plete. The orthogonality follows from the fact that (u − vn, ej ) = 0 as soon 
as n ≥ j and 

(10.7)	 (u − v, ej ) = lim (u − vn, ej ) = 0 
n→∞ 
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by continuity of the inner product (which follows from Cauchy’s inequality). 

Now, we say an orthonormal sequence is complete, or is and orthonormal 
basis of H if u ⊥ ej = 0 for all j implies u = 0. Then we see:­

Proposition 15. If {ej �∞	 is an orthonormal basis in a Hilbert space Hj=1 
then 

∞

(10.8)	 u = (u, ej )ej ∀ u ∈ H. 
j=1 

Proof. From the lemma the series converges to v and (u − v) ⊥ ej for all j 
so by the assumed completeness, u = v which is (10.8). � 

(3) Gram-Schmidt 

Theorem 6. Every separable Hilbert space has an orthonormal basis. 

Proof. Take a countable dense subset – which can be arranged as a se­
quence {vj } and the existence of which is the definition of separability – 
and orthonormalize it. Thus if v1 =� 0 set ei = v1/�v1�. Proceeding by 
induction we can suppose to have found for a given integer n elements ei, 
i = 1, . . . ,m, where m ≤ n, which are orthonormal and such that the linear 
span 

(10.9)	 sp(e1, . . . , em) = sp(v1, . . . , vn). 

To show the inductive step observe that if vn+1 is in the span(s) in (10.9) 
then the same ei work for n + 1. So it follows that 

n�	 w
(10.10)	 w = vn+1 − (vn+1, ej )ej = 0 so em+1 = 

j=1 

�
�w� 

makes sense. Adding em+1 gives the equality of the spans for n + 1. 
Thus we may continue indefinitely. There are only two possibilities, 

either we get a finite set of ei’s or an infinite sequence. In either case this 
must be an orthonormal basis. That is we claim 

(10.11)	 H � u ⊥ ej ∀ j = ⇒ u = 0. 

This uses the density of the vn’s. That is, there must exist a sequence wj 

where each wj is a vn, such that wj → u in H. Now, each each vn, and hence 
each wj , is a finite linear combination of ek’s so, by Bessel’s inequality 

(10.12) �wj �2 =	 |(wj , ek)|2 = |(u − wj , ek)|2 ≤ �u − wj �2 

k k 

where (u, ej ) = 0 for all j has been used. Thus �wj � → 0 and u = 0. � 

(4) Isomorphism to l2 

A finite dimensional Hilbert space is isomorphic to Cn with its standard 
inner product. Similarly from the result above 

Proposition 16. Any infinite-dimensional separable Hilbert space (over 
the complex numbers) is isomorphic to l2 , that is there exists a linear map 

(10.13)	 T : H −→ L2 
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which is 1-1, onto and satisfies (Tu, Tv)l2 = (u, v)H and �Tu�l2 = �u�H 

for all u, v ∈ H. 

Proof. Choose an orthonormal basis – which exists by the discussion above 
and set 

(10.14)	 Tu = {(u, ej )�∞j=1. 

This maps H into l2 by Bessel’s inequality. Moreover, it is linear since 
the entries in the sequence are linear in u. It is 1-1 since Tu = 0 implies 
(u, ej ) = 0 for all j implies u = 0 by the assumed completeness of the 
orthonormal basis. It is surjective since if {cj }∞ thenj=1 

∞

(10.15)	 u = cj ej 

j=1 

converges in H. This is the same argument as above – the sequence of 
partial sums is Cauchy by Bessel’s inequality. Again by continuity of the 
inner product, Tu = {cj } so T is surjective. 

The equality of the norms follows from equality of the inner products 
and the latter follows by computation for finite linear combinations of the 
ej and then in general by continuity.	 � 
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Problem set 5, Due 11AM Tuesday 17 Mar. 

You should be thinking about using Lebesgue’s dominated convergence at several 
points below. 

Problem 5.1 
Let f : R −→ C be an element of L1(R). Define 

(10.16) fL(x) = 
f(x) x ∈ [−L,L] 
0 otherwise. 

Show that fL ∈ L1(R) and that |fL − f | → 0 as L →∞. 
Problem 5.2 Consider a real-valued function f : R −→ R which is locally inte­

grable in the sense that 

(10.17) gL(x) = 
f(x) x ∈ [−L,L] 
0 x ∈ R \ [−L,L] 

is Lebesgue integrable of each L ∈ N. 
(1) Show that for each fixed L the function ⎧ ⎪⎨ ⎪⎩ 

gL(x) if gL(x) ∈ [−N,N ] 
N if gL(x) > N 

−N if gL(x) < −N 

(N )(10.18) gL (x) = 

is Lebesgue integrable. 
(N)� 
|g − gL| → 0 as N →∞. 

(3) Show that there is a sequence, hn, of step functions such that 
(2) Show that L 

(10.19) hn(x) f(x) a.e. in R.→ 

(4) Defining ⎧⎪⎪⎪⎨ ⎪⎪⎪⎩ 

0 x �∈ [−L,L] 
hn(x) if hn(x) ∈ [−N,N ], x ∈ [−L,L](N)(10.20) hn,L = . 
N if hn(x) > N, x ∈ [−L,L] 
−N if hn(x) < −N, x ∈ [−L,L] 

(N) (N) 
n,L − gShow that → 0 as n →∞.|h |L 

Problem 5.3 Show that L2(R) is a Hilbert space. 
First working with real functions, define L2(R) as the set of functions f : R −→ R 

which are locally integrable and such that |f |2 is integrable. 

(1) For such f choose hn and define gL, g
(N) and hn 

(N) by (10.17), (10.18) andL 
(10.20). 

(2) Show using the sequence h(N) (N) (N))2 arefor fixed N and L that g and (gn,L L L 
(N) (N)in L1(R) and that )2 )2(h − (g 0 as n →∞.| |

(g
n,L L →

(N)(3) Show that (gL)2 ∈ L1(R) and that |
|(gL)2 − f2 0 as L →∞. 

(5) Show that f, g ∈ L2(R) then fg ∈ L

)2 − (gL)2 0 as N →∞.| →L 
(4) Show that | → 

1(R) and that 

(10.21) | fg| ≤ |fg| ≤ �f�L2 �g�L2 , �f�2 = |f |2 .L2 
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(6) Use these constructions to show that L2(R) is a linear space. 
(7) Conclude that the quotient space L2(R) = L2(R)/N , where N is the space 

of null functions, is a real Hilbert space. 
(8) Extend the arguments to the case of complex-valued functions. 

Problem 5.4 
Consider the sequence space ⎧⎨ 

⎫⎬ 
(10.22) h2,1 = ⎩ 

c : N � j �−→ cj ∈ C; (1 + j2) cj 
2| | < ∞⎭ 

. 
j 

(1) Show that 

(10.23) h2,1 × h2,1 � (c, d) �−→ �c, d� = (1 + j2)cj dj 

j 

is an Hermitian inner form which turns h2,1 into a Hilbert space. 
(2) Denoting the norm on this space by � · �2,1 and the norm on l2 by � · �2, 

show that 

(10.24) h2,1 ⊂ l2 , �c�2 ≤ �c�2,1 ∀ c ∈ h2,1 . 

Problem 5.5 In the separable case, prove Riesz Representation Theorem directly. 
Choose an orthonormal basis {ei} of the separable Hilbert space H. Suppose 

T : H −→ C is a bounded linear functional. Define a sequence 

(10.25) wi = T (ei), i ∈ N. 
(1) Now, recall that |Tu| ≤ C�u�H for some constant C. Show that for every 

finite N, 
N

(10.26) |wi|2 ≤ C2 . 
j=1 

(2) Conclude that {wi} ∈ l2 and that 

(10.27) w = wiei ∈ H. 
i 

(3) Show that 

(10.28) T (u) = �u,w�H ∀ u ∈ H and �T � = �w�H . 
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Solutions to Problem set 4 

Just to compensate for last week, I will make this problem set too short and 
easy! 

Problem 4.1 
Let H be a normed space in which the norm satisfies the parallelogram law: 

(10.29) �u + v�2 + �u − v�2 = 2(�u�2 + �v�2) ∀ u, v ∈ H. 

Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian) 
inner product. Big Hint:- Try 

1 � � 
(10.30) (u, v) = 

4 
�u + v�2 − �u − v�2 + i�u + iv�2 − i�u − iv�2 ! 

Solution: Setting u = v, even without the parallelogram law, 

(10.31) (u, u) = 
1
4 
��2u�2 + i�(1 + i)u�2 − i�(1 − i)u�2

� 
= �u�2 . 

So the point is that the parallelogram law shows that (u, v) is indeed an Hermitian 
inner product. Taking complex conjugates and using properties of the norm, �u + 
iv� = �v − iu� etc 

1 � � 
(10.32) (u, v) = 

4 
�v + u�2 − �v − u�2 − i�v − iu�2 + i�v + iu�2 = (v, u). 

Thus we only need check the linearity in the first variable. This is a little tricky! 
First compute away. Directly from the identity (u, −v) = −(u, v) so (−u, v) = 
−(u, v) using (10.32). Now, 
(10.33) 

(2u, v) = 
4
1 � �u + (u + v)�2 − �u + (u − v)�2 

+ i�u + (u + iv)�2 − i�u + (u − iv)�2

1 �

=

2 
�u + v�2 + �u�2 − �u − v�2 − �u�2


+ i�(u + iv)�2 + i�u�2 − i�u − iv�2 − i�u�2

− 
4
1 � �u − (u + v)�2 − �u − (u − v)�2 + i�u − (u + iv)�2 − i�u − (u − iv)�2

� 
=2(u, v). 

Using this and (10.32), for any u, u� and v, 

1
(u + u�, v) = (u + u�, 2v)

2 

=
1 1 � �(u + v) + (u� + v)�2 − �(u − v) + (u� − v)�2 

2 4 
+ i�(u + iv) + (u − iv)�2 − i�(u − iv) + (u� − iv)�2

1 � 
(10.34) =

4 
�u + v� + �u� + v�2 − �u − v� − �u� − v�2 

+ i�(u + iv)�2 + i�u − iv�2 − i�u − iv� − i�u� − iv�2

− 
2
1 

4
1 � �(u + v) − (u� + v)�2 − �(u − v) − (u� − v)�2 

+ i�(u + iv) − (u − iv)�2 − i�(u − iv) = (u� − iv)�2

= (u, v) + (u�, v). 
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Using the second identity to iterate the first it follows that (ku, v) = k(u, v) for any 
u and v and any positive integer k. Then setting nu� = u for any other positive 
integer and r = k/n, it follows that 

(10.35) (ru, v) = (ku�, v) = k(u�, v) = rn(u�, v) = r(u, v) 

where the identity is reversed. Thus it follows that (ru, v) = r(u, v) for any rational 
r. Now, from the definition both sides are continuous in the first element, with 
respect to the norm, so we can pass to the limit as r x in R. Also directly from 
the definition, 

→ 

1 �	 � 
(10.36) (iu, v) = 

4 
�iu + v�2 − �iu − v�2 + i�iu + iv�2 − i�iu − iv�2 = i(u, v) 

so now full linearity in the first variable follows and that is all we need. 
Problem 4.2 
Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis 

{vi}ni=1, meaning that any element of H can be written 

(10.37)	 v = civi 

i 

and there is no dependence relation between the vi’s – the presentation of v = 0 in 
the form (10.37) is unique. Show that H has an orthonormal basis, {ei}n satis­i=1 
fying (ei, ej ) = δij (= 1 if i = j and 0 otherwise). Check that for the orthonormal 
basis the coefficients in (10.37) are ci = (v, ei) and that the map 

(10.38)	 T : H � v �−→ ((v, ei)) ∈ Cn 

is a linear isomorphism with the properties 

(10.39) (u, v) = (Tu)i(Tv)i, �u�H = �Tu�Cn ∀ u, v ∈ H. 
i 

Why is a finite dimensional preHilbert space a Hilbert space? 
Solution: Since H is assumed to be finite dimensional, it has a basis vi, i = 

1, . . . , n. This basis can be replaced by an orthonormal basis in n steps. First 
replace v1 by e1 = v1/�v1� where �v1� = 0 by the linear indepedence of the basis. �
Then replace v2 by 

(10.40) e2 = w2/�w2�, w2 = v2 − �v2, e1�e1. 

Here w2 ⊥ e1 as follows by taking inner products; w2 cannot vanish since v2 and e1 

must be linearly independent. Proceeding by finite induction we may assume that 
we have replaced v1, v2, . . . , vk, k < n, by e1, e2, . . . , ek which are orthonormal 
and span the same subspace as the vi’s i = 1, . . . , k. Then replace vk+1 by 

k

(10.41)	 ek+1 = wk+1/�wk+1�, wk+1 = vk+1 − �vk+1, ei�ei. 
i=1 

By taking inner products, wk+1 ⊥ ei, i = 1, . . . , k and wk+1 =� 0 by the linear 
independence of the vi’s. Thus the orthonormal set has been increased by one 
element preserving the same properties and hence the basis can be orthonormalized. 

Now, for each u ∈ H set 

(10.42)	 ci = �u, ei�. 
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n

It follows that U = u − ciei is orthogonal to all the ei since 
i=1 

(10.43) �u, ej � = �u, ej � − ci�ei, ej � = �u.ej � − cj = 0. 
i 

This implies that U = 0 since writing U = diei it follows that di = �U, ei� = 0. 
i 

Now, consider the map (10.38). We have just shown that this map is injective, 
since Tu = 0 implies ci = 0 for all i and hence u = 0. It is linear since the ci depend 
linearly on u by the linearity of the inner product in the first variable. Moreover 
it is surjective, since for any ci ∈ C, u = ciei reproduces the ci through (10.42). 

i 
Thus T is a linear isomorphism and the first identity in (10.39) follows by direct 
computation:­

n

(Tu)i(Tv)i = �u, ei� 
i=1 i 

(10.44) � 
= �u, �v, ei�ei� 

i 

= �u, v�. 
Setting u = v shows that �Tu�Cn = �u�H . 

Now, we know that Cn is complete with its standard norm. Since T is an 
isomorphism, it carries Cauchy sequences in H to Cauchy sequences in Cn and T −1 

carries convergent sequences in Cn to convergent sequences in H, so every Cauchy 
sequence in H is convergent. Thus H is complete. 




