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Lecture 10. TUESDAY, MAR 10

All of this is easy to find in the various reference notes and/or books so I will
keep these notes very brief.
(1) Bessel’s inequality
If in a preHilbert space H, e;, i = 1,..., N are orthonormal —so (e;, e;) =
d;; then for any element u € H, set

N
v= Z(u, e;)e; then
i=1
(10.1) . . ,
lollFr = > 1w e)* < Jlullf,
i=1
(u—v) Le, i=1,...,N.
The last statement follows immediately by computing (u,e;) = (v, e;) and
similarly ||v||? can be computed directly. Then the inequality, which is
Bessel’s inequality, follows from Cauchy’s inequality since from the last
statement
(10.2) []]* = (v,0) = (v,u) + (v,0 =) = (v,u) = [(v,u)] < [o]l]u]

shows [|v[| < f[ul]
(2) Orthonormal bases:
Since in the inequality in (10.1) the right side is independent of N it
follows that if {e;}$2, is a countable orthonormal set then

(10.3) D luse)® < Jullf.
i=1

From this it follows that the sequence

n

(10.4) Up = Z(u, e;)e;

i=1
is Cauchy since if m > n,
o0
(10.5) lon —omll® = D" llwe)? < Y lluey)f?
n<j<m Jj=n+1

and the right side is small if n is large, independent of m.

Lemma 5. If H is a Hilbert space — so now we assume completeness — and
{€;}2, is an orthonormal sequence then for each u € H,

(10.6) v = Z(u, ejle; € H

converges and (v —v) L e; for all j.

Proof. The limit exists since the sequence is Cauchy and the space is com-
plete. The orthogonality follows from the fact that (v — v, e;) = 0 as soon
asn > j and

(10.7) (u—wv,e;) = lim (u—vp,e;) =0

n—oo
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by continuity of the inner product (which follows from Cauchy’s inequality).
O

Now, we say an orthonormal sequence is complete, or is and orthonormal
basis of H if w 1 e; = 0 for all j implies u = 0. Then we see:-

Proposition 15. If {e;||32, is an orthonormal basis in a Hilbert space H
then

(10.8) u = Z(u, ej)e; ¥V ue H.
j=1
Proof. From the lemma the series converges to v and (v —v) L e; for all j
so by the assumed completeness, u = v which is (10.8). O

(3) Gram-Schmidt
Theorem 6. FEvery separable Hilbert space has an orthonormal basis.

Proof. Take a countable dense subset — which can be arranged as a se-
quence {v;} and the existence of which is the definition of separability —
and orthonormalize it. Thus if v # 0 set e; = v1/|v1]. Proceeding by
induction we can suppose to have found for a given integer n elements e;,
i=1,...,m, where m < n, which are orthonormal and such that the linear
span

(10.9) sp(e1,y ... em) =sp(v1,...,0n).

To show the inductive step observe that if v,41 is in the span(s) in (10.9)
then the same e; work for n + 1. So it follows that

n

(10.10) W= VUpy1 — Z(vwrh ej)ej # 050 emi1 =
j=1

w
[[w]
makes sense. Adding e,,+1 gives the equality of the spans for n + 1.

Thus we may continue indefinitely. There are only two possibilities,

either we get a finite set of e;’s or an infinite sequence. In either case this
must be an orthonormal basis. That is we claim

(10.11) HouleVj=u=0.

This uses the density of the v,,’s. That is, there must exist a sequence w;
where each wj is a vy, such that w; — v in H. Now, each each v,,, and hence
each wyj, is a finite linear combination of ej’s so, by Bessel’s inequality

(10.12) o = 221w e = 2w = wse ) < =yl

where (u,e;) =0 for all j has been used. Thus ||wj|| =0and u=0. O

(4) Isomorphism to I?
A finite dimensional Hilbert space is isomorphic to C™ with its standard
inner product. Similarly from the result above

Proposition 16. Any infinite-dimensional separable Hilbert space (over
the complex numbers) is isomorphic to [, that is there exists a linear map

(10.13) T:H—L?
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which is 1-1, onto and satisfies (Tu,Tv);z = (u,v)g and |Tull;z = ||ullg
for all u, v € H.

Proof. Choose an orthonormal basis — which exists by the discussion above
and set

(10.14) Tu={(u, ;)72

This maps H into [?> by Bessel’s inequality. Moreover, it is linear since
the entries in the sequence are linear in w. It is 1-1 since Tw = 0 implies
(u,ej) = 0 for all j implies u = 0 by the assumed completeness of the
orthonormal basis. It is surjective since if {c;}32, then

o0

(10.15) u=> cje,

j=1
converges in H. This is the same argument as above — the sequence of
partial sums is Cauchy by Bessel’s inequality. Again by continuity of the
inner product, Tu = {c;} so T is surjective.

The equality of the norms follows from equality of the inner products

and the latter follows by computation for finite linear combinations of the
e; and then in general by continuity. O
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PRrROBLEM SET 5, DUE 11AM TUESDAY 17 MAR.

You should be thinking about using Lebesgue’s dominated convergence at several
points below.

Problem 5.1
Let f: R — C be an element of £!(R). Define
(10.16) ful@y= ) rel bl
0 otherwise.

Show that f; € £!(R) and that [|f, — f| — 0 as L — oo.
Problem 5.2 Consider a real-valued function f : R — R which is locally inte-
grable in the sense that

f(z) wel-L L]
10.17 =
(10.17) 9:(2) {0 z €R\ [-L, L]
is Lebesgue integrable of each L € N.
(1) Show that for each fixed L the function

gr(z) if gp(x) € [-N, N]
(10.18) g (@) ={N if g (z) > N
—-N if gp(z) < =N
is Lebesgue mtegrable.

()Showthatf|g ) — gl = 0as N — .
(3) Show that there is a sequence, h,,, of step functions such that

(10.19) hn(z) — f(z) a.e. in R.
(4) Defining

0 x &[-L,L]
hn(x) if hy(x) € [-N,N|, x € [-L,L
Gomy = (@) @) NN, se L)
N if hyp(x) > N, x € [-L, L]
N ifh(z) < —N, z€[-L,I]
Show that [ |h(N) g = 0as n — o

Problem 5.3 Show that £2(R) is a Hilbert space.
First working with real functions, define £2(R) as the set of functions f : R — R
which are locally integrable and such that |f |2 is integrable.

(1) For such f choose h,, and define gy, gL N) and BV by (10.17), (10.18) and

(10.20).
(2) Show using the sequence h ) for fixed N and L that g(L ) and (91, (N ))2 are
in £'(R) and that [ |( h(N) — ("2 = 0 as n — .

(3) Show that (g)% € £*(R) and that [ |(g§:N))2 —(g9)*| — 0 as N — oo.
) Show that [ |(gr)* — f?| — 0 as L — oo.
(5) Show that f, g € L2(R) then fg € £L1(R) and that

(10.21) |/mm/Vmgmmmmmw;:/m?
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(6) Use these constructions to show that £2(R) is a linear space.
(7) Conclude that the quotient space L?(R) = £L2(R)/N, where N is the space
of null functions, is a real Hilbert space.
(8) Extend the arguments to the case of complex-valued functions.
Problem 5.4
Consider the sequence space

(10.22) Wl =0eiN3jr— e (1457 < oo
J
(1) Show that

(10.23) R*t x B2 5 (e,d) — (¢, d) = Z(l + j%)e;d;
J
is an Hermitian inner form which turns 2% into a Hilbert space.

(2) Denoting the norm on this space by || - ||2.1 and the norm on I2 by || - ||,
show that

(10.24) REYC 2 lclle < |lell2.1 ¥ e € A%

Problem 5.5 In the separable case, prove Riesz Representation Theorem directly.
Choose an orthonormal basis {e;} of the separable Hilbert space H. Suppose
T : H — C is a bounded linear functional. Define a sequence

(10.25) w; =T(e;), 1 €N,
(1) Now, recall that |Tu| < C||u||y for some constant C. Show that for every
finite IV,
N
(10.26) > lwil* < C2
j=1

(2) Conclude that {w;} € [* and that
(10.27) w=> we; € H.

(3) Show that
(10.28) T(u) = (u,w)yy Yu e H and ||T|| = ||w||z-
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SOLUTIONS TO PROBLEM SET 4

Just to compensate for last week, I will make this problem set too short and

easy!

Problem 4.1

Let H be a normed space in which the norm satisfies the parallelogram law:
(10.29) lu+vll? + llu = ol* = 2(|Jul® + [v]|*) ¥ u,v € H.

Show that the norm comes from a positive definite sesquilinear (i.e. Hermitian)
inner product. Big Hint:- Try

1
(10.30) (u,v) = 1
Solution: Setting u = v, even without the parallelogram law,

(Hu + v||2 — JJu— v||2 +dlu+ z'v||2 —ilju — ivHQ)!

(10.31) (u,u) = i [[2ull® + 2l (1 + ul® =il (1 = Dull?) = ful®.

So the point is that the parallelogram law shows that (u,v) is indeed an Hermitian
inner product. Taking complex conjugates and using properties of the norm, |lu +
w| = ||v — iul| etc

— 1
(10.32)  (u,v) = 7 (v + ull* = v = ull® = illv — dull® + v+ iul]*) = (v,u).

Thus we only need check the linearity in the first variable. This is a little tricky!

First compute away. Directly from the identity (u,—v) = —(u,v) so (—u,v) =
—(u,v) using (10.32). Now,
(10.33)

1
(2u,0) = 7 (lu+ (u+ 0 = [lu+ (u—v)|?

+ilu+ (u+)|* —illu+ (u—iv)|]?)
1

=5 (Ilu+ ol flall® = flu = of* — [Ju|?
+ | (u + )|+ iflul|* = illu — vl — ifu]?)

1 . . ) )

=7 (le= (@t o)l* = flu = (w = v)|* +illu = (w+iw)[|* = illu — (u—iv)]*)
=2(u,v).

Using this and (10.32), for any u, v’ and v,

1
(u+u',v) = §(u+ u, 2v)

11
251(\\(u+@)+(u'+v)|\2— (= v) + (v —v)|?
+ || (u + iv) 4+ (u — iv)||? —i||(u — ) + (v — w)||2)
1
(10.34) 21(||U+U|| + [lu” + 0] = [Ju — vf| = [Ju” = |]?
+ || (u 4 ) |2 +ilju — iv]|? —i|lu —iv| —i|lu — iv||2)
11
A0 — @ )= = v) - ()

+ill(w+ i) = (w = iv)||* = ill(u — iv) = (u —iv)||?)
= (u,v) + (v, v).
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Using the second identity to iterate the first it follows that (ku,v) = k(u, v) for any
u and v and any positive integer k. Then setting nu’ = u for any other positive
integer and r = k/n, it follows that

(10.35) (ru,v) = (ku',v) = k(u',v) = rn(u',v) = r(u,v)

where the identity is reversed. Thus it follows that (ru,v) = r(u,v) for any rational
r. Now, from the definition both sides are continuous in the first element, with
respect to the norm, so we can pass to the limit as » — z in R. Also directly from
the definition,

1
(10.36) (iu,v) = 1 (liw +v||* = [Jiw — v||* + illiu + iv||* — i|liv — |]*) = i(u,v)

so now full linearity in the first variable follows and that is all we need.

Problem 4.2

Let H be a finite dimensional (pre)Hilbert space. So, by definition H has a basis
{v;}I~,, meaning that any element of H can be written

(10.37) v=3cw

and there is no dependence relation between the v;’s — the presentation of v =0 in
the form (10.37) is unique. Show that H has an orthonormal basis, {e;}}_; satis-
fying (e;,e;) = 6;5 (= 1if ¢ = j and 0 otherwise). Check that for the orthonormal
basis the coefficients in (10.37) are ¢; = (v, e;) and that the map

(10.38) T:H>vr— ((v,e;)) €eC”

is a linear isomorphism with the properties

(10.39) (u,v) = Z(Tu)i(Tv)i, lullgr = || Tullen ¥V u,v € H.
i

Why is a finite dimensional preHilbert space a Hilbert space?

Solution: Since H is assumed to be finite dimensional, it has a basis v;, i =
1,...,n. This basis can be replaced by an orthonormal basis in n steps. First
replace vy by e; = v1/||v1|| where |Jv1]| # 0 by the linear indepedence of the basis.
Then replace vy by
(10.40) €y = wg/ngH, Wy = UV — <’U27€1>€1.

Here wy L e; as follows by taking inner products; wy cannot vanish since vo and ey
must be linearly independent. Proceeding by finite induction we may assume that

we have replaced vy, va, ..., vk, K < n, by €1, €2, ..., ex which are orthonormal
and span the same subspace as the v;’s ¢ = 1,..., k. Then replace vgy1 by
k
(10.41) eht1 = Wt/ | Wett |, Wht1 = Vg1 — Z(Uk+1,€i>€i~
i=1

By taking inner products, wi+1 L e;, ¢ = 1,...,k and wgy; # 0 by the linear

independence of the v;’s. Thus the orthonormal set has been increased by one

element preserving the same properties and hence the basis can be orthonormalized.
Now, for each v € H set

(10.42) ci = (u,e;).
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n

It follows that U = u — Y ¢;e; is orthogonal to all the e; since
i=1

(10.43) (u,e;) = (u,ej) — Zci<ei,ej> = (u.e;) —¢; = 0.

This implies that U = 0 since writing U = ) d;e; it follows that d; = (U, e;) = 0.

1
Now, consider the map (10.38). We have just shown that this map is injective,
since T'u = 0 implies ¢; = 0 for all 4 and hence u = 0. It is linear since the ¢; depend
linearly on u by the linearity of the inner product in the first variable. Moreover
it is surjective, since for any ¢; € C, u = Y ¢;e; reproduces the ¢; through (10.42).

K3
Thus T is a linear isomorphism and the first identity in (10.39) follows by direct
computation:-

n

> (Tw)i(Tv); = (ue;)
i=1 i
10.44
(10.44) = (0, (v, e)es)
i
= (u,v).
Setting u = v shows that ||Tullc» = ||ul|a-

Now, we know that C™ is complete with its standard norm. Since T is an
isomorphism, it carries Cauchy sequences in H to Cauchy sequences in C" and 7!
carries convergent sequences in C” to convergent sequences in H, so every Cauchy
sequence in H is convergent. Thus H is complete.





