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Lecture 21. Tuesday, April 28: Dirichlet problem on an interval 

I want to do a couple of ‘serious’ applications of what we have done so far. There 
are many to choose from, and I will mention some more, but let me first consider 
the Diriclet problem on an interval. I will choose the interval [0, 2π] because we 
looked at it before. So, what we are interested in is the problem of solving 

d2u(x)
(21.1) − 

dx2 
+ V (x)u(x) = f(x) on (0, 2π), u(0) = u(2π) = 0 

where the last part are the Dirichlet boundary conditions. I will assume that 

(21.2)	 V : [0, 2π] −→ R is continuous. 

Now, it certainly makes sense to try to solve the equation (21.1) for say a given 
f ∈ C0([0, 2π]), looking for a solution which is twice continuously differentiable on 
the interval. It may not exist, depending on V but one thing we can shoot for, 
which has the virtue of being explicit is the following: 

Proposition 28. If V ≥ 0 as in (21.2) then for each f ∈ C0([0, 2π]) there exists a 
unique twice continuously differentiable solution to (21.1). 

You will see that it is a bit hard to approach this directly – especially if you 
remember some ODE theory from 18.03. There are in fact various approaches to 
this but we want to go through L2 theory – not surprisingly of course. How to 
start? 

Well, we do know how to solve (21.1) if V ≡ 0 since we can use (Riemann) 
integration. Thus, ignoring the boundary conditions we can find a solution to 
−d2v/dx2 = f on the interval by integrationg twice: 

x y 

(21.3)	 v(x) = − f(t)dtdy satifies − d2v/dx2 = f on (0, 2π). 
0 0 

Moroever v really is twice continuously differentiable if f is continuous. So, what 
has this got to do with operators? Well, we can change the order of integration in 
(21.3) to write v as � x � x � 2π 

(21.4) v(x) = −	 f(t)dydt = a(x, t)f(t)dt, a(x, t) = (t − x)H(x − t) 
0 t 0 

where the Heaviside function H(y) is 1 when y ≥ 0 and 0 when y < 0. Thus a(x, t) 
is actually continuous on [0, 2π] × [0, 2π] since the t − x factor vanishes at the jump 
in H(t − x). Thus v is given by applying an integral operator to f. 

Before thinking more seriously about this, recall that there are also boundary 
conditions. Clearly, v(0) = 0 since we integrated from there. However, there is no 
particular reason why � 2π 

(21.5)	 v(2π) = (t − 2π)f(t)dt 
0 

should vanish. However, we can always add to v any linear function and still satify 
the differential equation. Since we do not want to spoil the vanishing at x = 0 we 
can only afford to add cx but if we choose c correctly, namely consider � 2π1
(21.6) c = − 

2π 0 
(t − 2π)f(t)dt, then (v + cx)(2π) = 0. 
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So, finally the solution we want is � 2π 

(21.7) w(x) = b(x, t)f(t)dt, b(x, t) = (t − x)H(x − t) − 
t − 2π

x.
2π0 

This is the unique, twice continuously differentiable, solution of −d2w/dx2 = f in 
(0, 2π) which vanishes at both end points. 

Lemma 16. The integral operator (21.7) extends by continuity from C0([0, 2π]) to 
a compact, self-adjoint operator on L2(0, 2π). 

Proof. Since w is given by an integral operator with a continuous real-valued kernel 
which is even in the sense that (check it) 

(21.8) b(t, x) = b(x, t) 

we might as well give a more general result. � 

Proposition 29. If b ∈ C0([0, 2π]2) then � 2π 

(21.9) Bf(x) = b(x, t)f(t)dt 
0 

defines a compact operator on L2(0, 2π) if in addition b satisfies 

(21.10) b(t, x) = b(x, t) 

then B is self-adjoint. 

Proof. � 

Now, recall from one of the Problem sets that uk = c sin(kx/2), k ∈ N, is an 
orthonormal basis for L2(0, 2π). Moreover, differentiating we find straight away 
that 

d2uk k2 

(21.11) − 
dx2 

=
4 
uk. 

Since of course uk(0) = 0 = uk(2π) as well, from the uniqueness above we conclude 
that 

4
(21.12) Buk = uk ∀ k. 

k2 

Thus, in this case we know the orthonormal basis of eigenfunctions for B. They 
are the uk, each eigenspace is 1 dimensional and the eigenvalues are 4k−2 . So, this 
happenstance allows us to decompose B as the square of another operator defined 
directly on the othornormal basis. Namely 

2
(21.13) Auk = 

k
uk = ⇒ B = A2 . 

Here again it is immediate that A is a compact self-adjoint operator on L2(0, 2π) 
since its eigenvalues tend to 0. In fact we can see quite a lot more than this. 

Lemma 17. The operator A maps L2(0, 2π) into C0([0, 2π]) and Af(0) = Af(2π) = 
0 for all f ∈ L2(0, 2π). 
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Proof. If f ∈ L2(0, 2π) we may expand it in Fourier-Bessel series in terms of the 
uk and find 

(21.14)	 f = ckuk, (ck) ∈ L2 . 
k 

Then of course, by definition, � 2ck(21.15)	 Af = uk. 
k 

k 

Here each uk is a bounded continuous function, with the bound on uk being in­
dependent of k. So in fact (21.15) converges uniformly and absolutely since it is 
uniformly Cauchy, for any q > p, ⎛ ⎞ 1 

2q q	 q� 2ck 
�	 � 

(21.16) | 
k
uk| ≤ 2|c| |ck|k−1 ≤ 2|c|�f�L2 ⎝ k−2⎠ 

k=p k=p	 k=p 

where Cauchy-Schwartz has been used. This proves that 

A : L2(0, 2π) −→ C0([0, 2π]) 

is bounded and by the uniform convergence uk(0) = uk(2π) = 0 for all k implies 
that Af(0) = Af(2π) = 0. � 

So, going back to our original problem we try to solve (21.1) by moving the V u 
term to the right side of the equation (don’t worry about regularity yet) and hope 
to use the observation that 

(21.17)	 u = −A2(V u) + A2f 

should satisfy the equation and boundary conditions. In fact, let’s hope that u = 
Av, which has to be true if (21.17) holds with v = −AV u + Af, and look instead 
for 

(21.18) v = −AV Av + Af = ⇒ (Id +AV A)v = Af. 

So, we know that multiplication by V, which is real and continuous, is a bounded 
self-adjoint operator on L2(0, 2π). Thus AV A is a self-adjoint compact operator so 
we can apply our spectral theory to Id +AV A. It has a complete orthonormal basis 
and is invertible if and only if it has trivial null space. 

An element of the null space would have to satisfy u = −AV Au. On the other 
hand we know that AV A is positive since 

(21.19) (AV Aw,w) = (V Av, Av) = V (x)|Av|2 ≥ 0 =⇒ |u|2 = 0, 
(0,2π)	 (0,2π) 

using the non-negativity of V. So, there can be no null space – all the eigenvalues 
of AV A are at least non-negative so −1 is not amongst them. 

Thus Id +AV A is invertible on L2(0, 2π) with inverse of the form Id +Q, Q again 
compact and self-adjoint. So, to solve (21.18) we just need to take 

(21.20) v = (Id +Q)Af v + AV Av = Af in L2(0, 2π).⇐⇒ 

Then indeed 

(21.21)	 u = Av satisfies u + A2V u = A2f. 
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In fact since v ∈ L2(0, 2π) from (21.20) we already know that u ∈ C0([0, 2π]) 
vanishes at the end points. 

Moreover if f ∈ C0([0, 2π]) we know that Bf = A2f is twice continuously differ­
entiable, since it is given by integrations – that is where B came from. Now, we 
know that u is L2 satisfies u = −A2(V u)+ A2f. Since V u ∈ L2((0, 2π) so is A(V u) 
and then, as seen above, A(A(V u) is continuous. So combining this with the result 
about A2f we see that u itself is continuous and hence so is V u. But then, going 
through the routine again 

(21.22) u = −A2(V u) + A2f 

is the sum of two twice continuously differentiable functions. Thus is so itself. In 
fact from the properties of B = A2 it satisifes 

d2u
(21.23) − 

dx2 
= −V u + f 

which is what the result claims. So, we have proved the existence part of Proposi­
tion 28. The uniqueness follows pretty much the same way. If there were two twice 
continuously differentiable solutions then the difference w would satisfy 

(21.24) 
d2w 

+ V w = 0, w(0) = w(2π) = 0 = w = −Bw = −A2V w. − 
dx2 

⇒ 

Thus w = Aφ, φ = −AV w ∈ L2(0, 2π). Thus φ in turn satisfies φ = AV Aφ and 
hence is a solution of (Id +AV A)φ = 0 which we know has none (assuming V ≥ 0). 
Since φ = 0, w = 0. 

This completes the proof of Proposition 28. To summarize what we have shown 
is that Id +AV A is an invertible bounded operator on L2(0, 2π) (if V ≥ 0) and 
then the solution to (21.1) is precisely 

(21.25) u = A(Id +AV A)−1Af 

which is twice continuously differentiable and satisfies the Dirichlet conditions for 
each f ∈ C0([0, 2π]). 

Now, even if we do not assume that V ≥ 0 we pretty much know what is 
happening. 

Proposition 30. For any V ∈ C0([0, 2π]) real-valued, there is an orthonormal basis 
wk of L2(0, 2π) consisting of twice-continuously differentiable functions on [0, 2π], 
vanishing at the end-points and satisfying − d

2 wk + V wk = Tkwk where Tk →∞ asdx2 

k → ∞. The equation (21.1) has a (twice continuously differentiable) solution for 
given f ∈ C0([0, 2π]) if and only if 

(21.26) TK = 0 = fwk = 0,⇒ 
(0,2π) 

i.e. f is orthogonal to the null space of Id +A2V, which is the image under A of the 
null space of Id +AV A, in L2(0, 2π). 
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Problem set 10 (the last), Due 11AM Tuesday 5 May. 

By now you should have become reasonably comfortable with a separable Hilbert 
space such as l2. However, it is worthwhile checking once again that it is rather large 
– if you like, let me try to make you uncomfortable for one last time. An important 
result in this direction is Kuiper’s theorem, which I will not ask you to prove1 . 
However, I want you to go through the closely related result sometimes known as 
Eilenberg’s swindle. Perhaps you will appreciate the little bit of trickery. First some 
preliminary results. Note that everything below is a closed curve in the x ∈ [0, 1] 
variable – you might want to identify this with a circle instead, I just did it the 
primitive way. 

Problem P10.1 Let H be a separable, infinite dimensional Hilbert space. Show 
that the direct sum of two copies of H is a Hilbert space with the norm 

2(21.27) H ⊕ H � (u1, u2) �−→ (�u1�H 
2 + �u2�H 

2 ) 
1 

either by constructing an isometric isomorphism 

(21.28) T : H −→ H ⊕ H, 1-1 and onto, �u�H = �Tu�H⊕H 

or otherwise. In any case, construct a map as in (21.28). 
Problem P10.2 One can repeat the preceding construction any finite number 

of times. Show that it can be done ‘countably often’ in the sense that if H is a 
separable, infinite dimensional, Hilbert space then 

(21.29) l2(H) = {u : N −→ H; �u�2 = 2 
l2(H) �ui�H < ∞}

i 

has a Hilbert space structure and construct an explicit isometric isomorphism from 
l2(H) to H. 

Problem P10.3 Recall, or perhaps learn about, the winding number of a closed 
curve with values in C∗ = C \ {0}. We take as given the following fact:2 If Q = 
[0, 1]N and f : Q −→ C∗ is continuous then for each choice of b ∈ C satisfying 
exp(2πib) = f(0), there exists a unique continuous function F : Q −→ C satisfying 

(21.30) exp(2πiF (q)) = f(q), ∀ q ∈ Q and F (0) = b. 

Of course, you are free to change b to b + n for any n ∈ Z but then F changes to 
F + n, just shifting by the same integer. 

(1) Now, suppose c : [0, 1] −→ C∗ is a closed curve – meaning it is continuous 
and c(1) = c(0). Let C : [0, 1] −→ C be a choice of F for N = 1 and 
f = c. Show that the winding number of the closed curve c may be defined 
unambiguously as 

(21.31) wn(c) = C(1) − C(0) ∈ Z. 

(2) Show that wn(c) is constant under homotopy. That is if ci : [0, 1] −→ C∗, 
i = 1, 2, are two closed curves so ci(1) = ci(0), i = 1, 2, which are homotopic 
through closed curves in the sense that there exists f : [0, 1]2 −→ C∗ 

1Kuiper’s theorem says that for any (norm) continuous map, say from any compact metric 
space, g : M −→ GL(H) with values in the invertible operators on a separable infinite-dimensional 
Hilbert space there exists a continuous map, an homotopy, h : M × [0, 1] −→ GL(H) such that 
h(m, 0) = g(m) and h(m, 1) = IdH for all m ∈ M. 

2Of course, you are free to give a proof – it is not hard. 
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continuous and such that f(0, x) = c1(x), f(1, x) = c2(x) for all x ∈ [0, 1] 
and f(y, 0) = f(y, 1) for all y ∈ [0, 1], then wn(c1) = wn(c2). 

(3) Consider the closed curve Ln : [0, 1] � x �−→ e2πix Idn×n of n × n matrices. 
Using the standard properties of the determinant, show that this curve is 
not homotopic to the identity through closed curves in the sense that there 
does not exist a continuous map G : [0, 1]2 −→ GL(n), with values in the 
invertible n × n matrices, such that G(0, x) = Ln(x), G(1, x) ≡ Idn×n for 
all x ∈ [0, 1], G(y, 0) = G(y, 1) for all y ∈ [0, 1]. 

Problem P10.4 Consider the closed curve corresponding to Ln above in the case 
of a separable but now infinite dimensional Hilbert space: 

(21.32) L : [0, 1] � x �−→ e 2πix IdH ∈ GL(H) ⊂ B(H) 

taking values in the invertible operators on H. Show that after identifying H with 
H ⊕ H as above, there is a continuous map 

(21.33) M : [0, 1]2 −→ GL(H ⊕ H) 

with values in the invertible operators and satisfying 
(21.34) 
M(0, x) = L(x), M(1, x)(u1, u2) = (e 4πix u1, u2), M(y, 0) = M(y, 1), ∀ x, y ∈ [0, 1]. 

Hint: So, think of H ⊕ H as being 2-vectors (u1, u2) with entries in H. This allows 
one to think of ‘rotation’ between the two factors. Indeed, show that 

(21.35) U(y)(u1, u2) = (cos(πy/2)u1 + sin(πy/2)u2, − sin(πy/2)u1 + cos(πy/2)u2) 

defines a continuous map [0, 1] � y �−→ U(y) ∈ GL(H ⊕ H) such that U(0) = Id, 
U(1)(u1, u2) = (u2, −u1). Now, consider the 2-parameter family of maps 

(21.36)	 U−1(y)V2(x)U(y)V1(x) 

where V1(x) and V2(x) are defined on H ⊕ H as multiplication by exp(2πix) on the 
first and the second component respectively, leaving the other fixed. 

Problem P10.5 Using a rotation similar to the one in the preceeding problem (or 
otherwise) show that there is a continuous map 

(21.37) G : [0, 1]2 −→ GL(H ⊕ H) 

such that 

(21.38)	 G(0, x)(u1, u2) = (e 2πix u1, e
−2πix u2), 

G(1, x)(u1, u2) = (u1, u2), G(y, 0) = G(y, 1) ∀ x, y ∈ [0, 1]. 

Problem P10.6 Now, think about combining the various constructions above in 
the following way. Show that on l2(H) there is an homotopy like (21.37), G̃ : 
[0, 1]2 −→ GL(l2(H)), (very like in fact) such that 

(21.39) G̃(0, x) {uk}∞ = 
� 
exp((−1)k2πix)uk 

�∞ 
,k=1	 k=1 

G̃(1, x) = Id, G̃(y, 0) = G̃(y, 1) ∀ x, y ∈ [0, 1]. 

Problem P10.7: Eilenberg’s swindle For an infinite dimenisonal separable Hilbert 
space, construct an homotopy – meaning a continuous map G : [0, 1]2 −→ GL(H) 
– with G(0, x) = L(x) in (21.32) and G(1, x) = Id and of course G(y, 0) = G(y, 1) 
for all x, y ∈ [0, 1]. 

Hint: Just put things together – of course you can rescale the interval at the end 
to make it all happen over [0, 1]. First ‘divide H into 2 copies of itself’ and deform 
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from L to M(1, x) in (21.34). Now, ‘divide the second H up into l2(H)’ and apply 
an argument just like the preceding problem to turn the identity on this factor into 
alternating terms multiplying by exp(±4πix) – starting with −. Now, you are on 
H ⊕ l2(H), ‘renumbering’ allows you to regard this as l2(H) again and when you 
do so your curve has become alternate multiplication by exp(±4πix) (with + first). 
Finally then, apply the preceding problem again, to deform to the identity (always 
of course through closed curves). Presto, Eilenberg’s swindle! 
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Solutions to Problem set 9 

P9.1: Periodic functions 
Let S be the circle of radius 1 in the complex plane, centered at the origin, 

S = {z; |z| = 1}. 
(1) Show that there is a 1-1 correspondence 

(21.40) C0(S) = {u : S −→ C, continuous} −→ 

{u : R −→ C; continuous and satisfying u(x + 2π) = u(x) ∀ x ∈ R}. 

Solution: The map E : R � θ �−→ e2πiθ ∈ S is continuous, surjective and 
2π-periodic and the inverse image of any point of the circle is precisly of 
the form θ + 2πZ for some θ ∈ R. Thus composition defines a map 

(21.41) E∗ : C0(S) −→ C0(R), E∗f = f ◦ E. 

This map is a linear bijection. 
(2) Show that there is a 1-1 correspondence 

(21.42) L2(0, 2π) ←→ {u ∈ L1 (R); u� 
(0,2π) 

∈ L2(0, 2π)loc

and u(x + 2π) = u(x) ∀ x ∈ R}/NP 

where NP is the space of null functions on R satisfying u(x + 2π) = u(x) 
for all x ∈ R. 

Solution: Our original definition of L2(0, 2π) is as functions on R which 
are square-integrable and vanish outside (0, 2π). Given such a function u 
we can define an element of the right side of (21.42) by assigning a value 
at 0 and then extending by periodicity 

(21.43) ũ(x) = u(x − 2nπ), n ∈ Z 

where for each x ∈ R there is a unique integer n so that x − 2nπ ∈ [0, 2π). 
Null functions are mapped to null functions his way and changing the choice 
of value at 0 changes ũ by a null function. This gives a map as in (21.42) 
and restriction to (0, 2π) is a 2-sided invese. 

(3) If we denote by L2(S) the space on the left in (21.42) show that there is a 
dense inclusion 

(21.44) C0(S) −→ L2(S). 

Solution: Combining the first map and the inverse of the second gives an 
inclusion. We know that continuous functions vanishing near the end-points 
of (0, 2π) are dense in L2(0, 2π) so density follows. 

So, the idea is that we can freely think of functions on S as 2π-periodic functions 
on R and conversely. 

P9.2: Schrödinger’s operator 
Since that is what it is, or at least it is an example thereof: 

d2u(x)
(21.45) − 

dx2 
+ V (x)u(x) = f(x), x ∈ R, 

(1) First we will consider the special case V = 1. Why not V = 0? – Don’t try 
to answer this until the end! 
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Solution: The reason we take V = 1, or at least some other positive 
constant is that there is 1-d space of periodic solutions to d2u/dx2 = 0, 
namely the constants. 

(2) Recall how to solve the differential equation 

d2u(x)
(21.46) − 

dx2 
+ u(x) = f(x), x ∈ R, 

where f(x) ∈ C0(S) is a continuous, 2π-periodic function on the line. Show 
that there is a unique 2π-periodic and twice continuously differentiable 
function, u, on R satisfying (21.46) and that this solution can be written 
in the form 

(21.47) u(x) = (Sf)(x) = A(x, y)f(y) 
0,2π 

where A(x, y) ∈ C0(R2) satisfies A(x + 2π, y + 2π) = A(x, y) for all (x, y) ∈
R. 

Extended hint: In case you managed to avoid a course on differential 
equations! First try to find a solution, igonoring the periodicity issue. To 
do so one can (for example, there are other ways) factorize the differential 
operator involved, checking that 

(21.48) 
d2u(x)

+ u(x) = −( 
dv 

+ v) if v = 
du − 

dx2 dx dx 
− u 

since the cross terms cancel. Then recall the idea of integrating factors to 
see that 

du dφ 
dx 
− u = e x 

dx
, φ = e−x u, 

(21.49) 
dv dψ 

+ v = e−x , ψ = e x v. 
dx dx 

Now, solve the problem by integrating twice from the origin (say) and hence 
get a solution to the differential equation (21.46). Write this out explicitly 
as a double integral, and then change the order of integration to write the 
solution as 

(21.50) u�(x) = A�(x, y)f(y)dy 
0,2π 

where A� is continuous on R× [0, 2π]. Compute the difference u�(2π)−u�(0) 
and du� (2π) − du� (0) as integrals involving f. Now, add to u� as solution dx dx 
to the homogeneous equation, for f = 0, namely c1ex + c2e−x , so that the 

du dunew solution to (21.46) satisfies u(2π) = u(0) and dx (2π) = dx (0). Now, 
check that u is given by an integral of the form (21.47) with A as stated. 

duSolution: Integrating once we find that if v = dx − u then 

x x 

(21.51) v(x) = −e−x e sf(s)ds, u�(x) = e x e−t v(t)dt 
0 0 



� 

128 LECTURE NOTES FOR 18.102, SPRING 2009 

gives a solution of the equation − d
2 u� + u�(x) = f(x) so combinging these dx2 

two and changing the order of integration 

u�(x) = 
x 

Ã(x, y)f(y)dy, Ã(x, y) = 
1
2 

� 
ey−x − e x−y 

� 
(21.52) � 

0 � 
1 

u�(x) = A�(x, y)f(y)dy, A�(x, y) = 2 (e
y−x − ex−y) x ≥ y 

(0,2π) 0 x ≤ y. 

Here A� is continuous since Ã vanishes at x = y where there might other­
wise be a discontinuity. This is the only solution which vanishes with its 
derivative at 0. If it is to extend to be periodic we need to add a solution 
of the homogeneous equation and arrange that 

du du
(21.53) u = u� + u��, u�� = ce x + de−x , u(0) = u(2π), (0) = (2π). 

dx dx 

So, computing away we see that 
(21.54) 

u�(2π) = 
� 2π 1 � 

ey−2π 2π−y 
� 
f(y), 

du� 
(2π) = − 

� 2π 1 � 
ey−2π + e 2π−y 

� 
f(y).

2 
− e 

dx 20 0 

Thus there is a unique solution to (21.53) which must satify 
(21.55) 

c(e 2π − 1) + d(e−2π − 1) = −u�(2π), c(e 2π − 1) − d(e−2π − 1) = − 
du� 

(2π)
dx 

1 
� 2π � � 1 

� 2π � � 
(e 2π − 1)c =

2 0 
e 2π−y f(y), (e−2π − 1)d = −

2 0 
ey−2π f(y). 

Putting this together we get the solution in the desired form: 
(21.56) � 

1 e2π−y+x 1 e−2π+y−x 

u(x) = 
(0.2π) 

A(x, y)f(y), A(x, y) = A�(x, y) + 
2 e2π − 1 

− 
2 e−2π − 1

= ⇒ 

A(x, y) = 
cosh(|x − y| − π) 

. 
eπ − e−π 

(3) Check, either directly or indirectly, that A(y, x) = A(x, y) and that A is 
real.


Solution: Clear from (21.56).

(4) Conclude that the operator S extends by continuity to a bounded operator 

on L2(S).

Solution. We know that �S� ≤ 

√
2π sup |A|.


(5) Check, probably indirectly rather than directly, that 

(21.57) S(e ikx) = (k2 + 1)−1 e ikx , k ∈ Z. 

Solution. We know that Sf is the unique solution with periodic bound­
ary conditions and eikx satisfies the boundary conditions and the equation 
with f = (k2 + 1)eikx . 

(6) Conclude, either from the previous result or otherwise that S is a compact 
self-adjoint operator on L2(S). 

Soluion: Self-adjointness and compactness follows from (21.57) since we 
know that the eikx/

√
2π form an orthonormal basis, so the eigenvalues of S 
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tend to 0. (Myabe better to say it is approximable by finite rank operators 
by truncating the sum). 

(7) Show that if g ∈ C0(S)) then Sg is twice continuously differentiable. Hint: 
Proceed directly by differentiating the integral. 

Solution: Clearly Sf is continuous. Going back to the formula in terms 
of u� + u�� we see that both terms are twice continuously differentiable. 

(8) From (21.57) conclude that S = F 2 where F is also a compact self-adjoint 
operator on L2(S) with eigenvalues (k2 + 1)−

1 
2 . 

Solution: Define F (eikx) = (k2 + 1)−
1
2 eikx . Same argument as above 

applies to show this is compact and self-adjoint. 
(9) Show that F : L2(S) −→ C0(S). 

Solution. The series for Sf 

1 � 
(2k2 + 1)−

1
2 (f, eikx)e ikx (21.58) Sf(x) = 

2π 
k 

converges absolutely and uniformly, using Cauchy’s inequality – for instance 
it is Cauchy in the supremum norm: 

1 
2 (f, eikx)e ikx| ≤ ��f�L2(21.59) (2k2 + 1)−

|k|>p 

for p large since the sum of the squares of the eigenvalues is finite. 
(10) Now, going back to the real equation (21.45), we assume that V is contin­

uous, real-valued and 2π-periodic. Show that if u is a twice-differentiable 
2π-periodic function satisfying (21.45) for a given f ∈ C0(S) then 

(21.60) u + S((V − 1)u) = Sf and hence u = −F 2((V − 1)u) + F 2f 

and hence conclude that 

(21.61) u = Fv where v ∈ L2(S) satisfies v + (F (V − 1)F )v = Ff 

where V − 1 is the operator defined by multiplication by V − 1. 
Solution: If u satisfies (21.45) then 

d2u(x)
(21.62) − 

dx2 
+ u(x) = −(V (x) − 1)u(x) + f(x) 

so by the uniquenss of the solution with periodic boundary conditions, 
u = −S(V − 1)u + Sf so u = F (−F (V − 1)u + Ff). Thus indeed u = Fv 
with v = −F (V − 1)u + Ff which means that v satisfies 

(21.63) v + F (V − 1)Fv = Ff. 

(11) Show the converse, that if v ∈ L2(S) satisfies 

(21.64) v + (F (V − 1)F )v = Ff, f ∈ C0(S) 

then u = Fv is 2π-periodic and twice-differentiable on R and satisfies 
(21.45). 

Solution. If v ∈ L2(0, 2π) satisfies (21.64) then u = Fv ∈ C0(S) satisfies 
u+F 2(V −1)u = F 2f and since F 2 = S maps C0(S) into twice continuously 
differentiable functions it follows that u satisfies (21.45). 
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(12) Apply the Spectral theorem to F (V − 1)F (including why it applies) and 
show that there is a sequence λj in R \ {0} with |λj | → 0 such that for all 
λ ∈ C \ {0}, the equation 

(21.65) λv + (F (V − 1)F )v = g, g ∈ L2(S) 

has a unique solution for every g ∈ L2(S) if and only if λ =� λj for any j. 
Solution: We know that F (V − 1)F is self-adjoint and compact so 

L2(0.2π) has an orthonormal basis of eigenfunctions of −F (V − 1)F with 
eigenvalues λj . This sequence tends to zero and (21.65), for given λ ∈
C \ {0}, if and only if has a solution if and only if it is an isomorphism, 
meaning λ =� λj is not an eigenvalue of −F (V − 1)F. 

(13) Show that for the λj the solutions of 

(21.66) λj v + (F (V − 1)F )v = 0, v ∈ L2(S), 

are all continuous 2π-periodic functions on R. 
Solution: If v satisfies (21.66) with λj = 0 then � v = −F (V − 1)F/λj ∈ 

C0(S). 
(14) Show that the corresponding functions u = Fv where v satisfies (21.66) are 

all twice continuously differentiable, 2π-periodic functions on R satisfying 

d2u
(21.67) − 

dx2 
+ (1 − sj + sj V (x))u(x) = 0, sj = 1/λj . 

Solution: Then u = Fv satisfies u = −S(V − 1)u/λj so is twice contin­
uously differentiable and satisfies (21.67). 

(15) Conversely, show that if u is a twice continuously differentiable, 2π-periodic 
function satisfying 

d2u
(21.68) − 

dx2 
+ (1 − s + sV (x))u(x) = 0, s ∈ C, 

and u is not identically 0 then s = sj for some j. 
Solution: From the uniquess of periodic solutions u = −S(V − 1)u/λj 

as before. 
(16) Finally, conclude that Fredholm’s alternative holds for the equation (21.45) 

Theorem 16. For a given real-valued, continuous 2π-periodic function V 
on R, either (21.45) has a unique twice continuously differentiable, 2π­
periodic, solution for each f which is continuous and 2π-periodic or else 
there exists a finite, but positive, dimensional space of twice continuously 
differentiable 2π-periodic solutions to the homogeneous equation 

(21.69) 
d2w(x)

+ V (x)w(x) = 0, x ∈ R,− 
dx2 

and (21.45) has a solution if and only if 
(0,2π) fw = 0 for every 2π-periodic 

solution, w, to (21.69). 

Solution: This corresponds to the special case λj = 1 above. If λj is not an 
eigenvalue of −F (V − 1)F then 

(21.70) v + F (V − 1)Fv = Ff 

has a unque solution for all f, otherwise the necessary and sufficient condition is 
that (v, Ff) = 0 for all v� satisfying v� + F (V − 1)Fv� = 0. Correspondingly either 
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(21.45) has a unique solution for all f or the necessary and sufficient condition is 
that (Fv�, f) = 0 for all w = Fv� (remember that F is injetive) satisfying (21.69). 

Not to be handed in, just for the enthusiastic 
Check that we really can understand all the 2π periodic eigenfunctions of the 

Schrödinger operator using the discussion above. First of all, there was nothing 
sacred about the addition of 1 to −d2/dx2 , we could add any positive number 
and get a similar result – the problem with 0 is that the constants satisfy the 
homogeneous equation d2u/dx2 = 0. What we have shown is that the operator 

d2u
(21.71) u �−→ Qu = − 

dx2 
u + V u 

applied to twice continuously differentiable functions has at least a left inverse 
unless there is a non-trivial solution of 

d2u
(21.72) − 

dx2 
u + V u = 0. 

Namely, the left inverse is R = F (Id +F (V −1)F )−1F. This is a compact self-adjoint 
operator. Show – and there is still a bit of work to do – that (twice continuously 
differentiable) eigenfunctions of Q, meaning solutions of Qu = τu are precisely the 
non-trivial solutions of Ru = τ−1u. 

What to do in case (21.72) does have a non-trivial solution? Show that the space 
of these is finite dimensional and conclude that essentially the same result holds by 
working on the orthocomplement in L2(S). 




