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140 LECTURE NOTES FOR 18.102, SPRING 2009

Lecture 24. THURSDAY, MAY 7: COMPLETENESS OF HERMITE BASIS

Here is what I claim was done last time. Starting from the ground state for the
harmonic oscillator

(24.1) H:—ﬁ—&—xQ, Hug = ug, uoze_w2/2
x

and using the creation and annihilation operators

(24.2) A:i—l—m,(ﬁ':—i—i—x7 AC—-CA=21d, H=CA+1d
dzr dzx

I examined the higher eigenfunctions:
(24.3) u; = Clug = pj(z)ug(c), p(z) = 2727 + Lots, Hu; = (2§ + 1)u;

and showed that these are orthogonal, u; L ux, j # k, and so when normalized
give an orthonormal system in L?(R) :

uj
(24.4) ej = 23'/2(]'!)%77%.

Now, what I want to show today, and not much more, is that the e; form an
orthonormal basis of L?(IR), meaning they are complete as an orthonormal sequence.
There are various proofs of this, but the only ‘simple’ ones I know involve the Fourier
inversion formula and I want to use the completeness to prove the Fourier inversion
formula, so that will not do. Instead I want to use a version of Mehler’s formula. I
also tried to motivate this a bit last time.

Namely, I suggested that to show the completeness of the e;’s it is enough to find
a compact self-adjoint operator with these as eigenfunctions and no null space. It
is the last part which is tricky. The first part is easy. Remembering that all the e;
are real, we can find an operator with the e;;s as eigenfunctions with corresponding
eigenvalues \; > 0 (say) by just defining

(24.5) Au(z) =3 Ml eg)es@) = 3 Aes (2) / e; ()uly).
§=0 §=0

For this to be an operator we need A; — 0 as j — oo, although for convergence we
just need the A; to be bounded. So, the problem with this is to show that A has
no null space — which of course is just the completeness of the e;- since (assuming
all the A; are positive)

(24.6) Au=0<=ule; V.

Nevertheless, this is essentially what we will do. The idea is to write A as an
integral operator and then work with that. I will take the \; = w’/ where w € [0, 1).
The point is that we can find an explicit formula for

(24.7) Apu = ijej(x)ej (y) = A(w, z,y).
=0

I struggled a bit with this in class but did pretty much manage to do it.
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To find A(w,z,y) we use some other things I did last time. First, I defined the
Fourier transform and showed its basic propertyL

(24.8) F:L'Y(R) — C° (R), F(u) =4,
(€)= [ e *ula), suplil < luls:.

Then I computed the Fourier transform of ug, namely

(24.9) (Fuo)(€) = V2muo(€).

Now, we can use this formula, of if you like the argument to prove it, to show
that

(24.10) v=e" M = h = re €
Changing the names of the variables this just says
1 . 2
24.11 —t = [ ey,
( ) e N /Re s
Now, again as I discussed last time, the definition of the u;’s can be rewritten
d , d .
(24.12) u](x) — (_% + m)je_$2/2 _ 6162/2(_%)]6—952.

Plugging this into (24.11) and carrying out the derivatives — which is legitimate
since the integral is so strongly convergent — gives

ew2/2
NS

Now we can use this formula twice on the sum on the left in (24.7) and insert
the normalizations in (24.4) to find that

0o , o x?/24y2%/2 (_1)j Jgitd
e w’ s
(24.14) ijej(-r)ej(y) = Z 473/2 /2 27 41 €
j=0 J=0 . ’

The crucial thing here is that we can sum the series to get an exponential, this
allows us to finally conclude:

Lemma 19. The identity (24.7) holds with
1 ( 1—w
—  exp(—————
VTV — w? 4(1 4+ w)
Proof. Summing the series in (24.14) we find that
e’ /2+y% /2

473/2

(24.13) u; () (—is)leims =" /4 s,

isac+ity—82/4—t2/4d8dt.

(24.15) A(w,z,y) = (@+y) — ﬁ@” B y)z)

1
(24.16) A(w,z,y) = / exp(—§wst +isx + ity — 5% /4 — t? /4)dsdt.
R2
Now, we can use the same formula as before for the Fourier transform of ug to
evaluate these integrals explicitly. I think the clever way, better than what I did in
lecture, is to change variables by setting

(24.17) s = (S+T)/V2, t = (S —T)/V2 = dsdt = dSdT,
x+y 1 27T —Yy 1 2
7 - (1+w)s zTW—E(l—w)T.

1
—§wst—|—isx+ity—52/4—t2/4 =4S
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The formula for the Fourier transform of exp(—z?) can be used, after a change of
variable, to conclude that

2y (_(w+y)2)

LTty 1 5 __2E

(24.18) /Rexp(ls vz attwsias= Ot PV 2(1+w)
. i e
ReXP(lTﬁy B i(l B w)TZ)dT - (21\(11)) eXP(M)~

Inserting these formulee back into (24.16) gives

1 (z+y)? (-y? 2* y
ﬁmexp<2(1+w)2(l—w)+2+2)

which after a little adjustment gives (24.15). O

(24.19) A(w,z,y) =

Now, this explicit representation of A,, as an integral operator allows us to show

Proposition 31. For all real-valued f € L*(R),

(24.20) Z\ w,e)* = || f112e-

Jj=1

Proof. By definition of A,

(24.21)

I

[(, ¢5)|* = lim(f, A f)

1

J

0 (24.20) reduces to
(24.22) lim(f, Aw.f) = £

To prove (24.22) we will make our work on the integral operators rather simpler
by assuming first that f € C°(R) is continuous and vanishes outside some bounded
interval, f(z) = 0 in |z| > R. Then we can write out the L? inner product as a
doulbe integral, which is a genuine (iterated) Riemann integral:

(24.23) (f,Awf) = //A (w,z,y) f(x) f(y)dyda.

Here I have used the fact that f and A are real-valued.

Look at the formula for A in (24.15). The first thing to notice is the factor
(1- wg)—% which blows up as w — 1. On the other hand, the argument of the
exponential has two terms, the first tends to 0 as w — 1 and the second blows up,
at least when x — y # 0. Given the signs, we see that

ife>0, X ={(z,y);|z| <R,|y| <R, |z —y| > e} then

(24.24) sup |A(w,z,y)] — 0 as w — 1.
X

So, the part of the integral in (24.23) over |z — y| > € tends to zero as w — 1.
So, look at the other part, where |z — y| < e. By the (uniform) continuity of f,
given § > 0 there exits € > 0 such that

(24.25) 2=yl < e = |f(2) = Fy)| 6.
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Now we can divide (24.23) up into three pieces:-

(24.26) (f, Awf) = A(w, z,y) f () f(y)dydz

S{la—yl>e}
+ / Alw, z,y)(f(x) — F(9))f(y)dydz
Sn{lz—y|<e}
4 / Alw, ,9)f () dydz
Sn{|z—y|<e}

where S = [-R, R]%.
Look now at the third integral in (24.26) since it is the important one. We can

change variable of integration from z to t = ﬁ—g(m —y) and then this becomes
1—w 9
Alw,y + [ 77— v) f(y) dydt,
Sn{|z—y|<e} Tw

1—w
(24.27) /
A(w, y+t 1er,y)

_ %exp (_1_“’(23, + tﬂ)?) exp (_tz) .

Vr(l+w 4(1 +w) 4
Here y is bounded; the first exponential factor tends to 1 so it is straightforward to
show that for any € > 0 the third term in (24.26) tends to

(24.28) | £]132 as w — 1 since /e_t2/4 = 2¢/7.

Noting that A > 0 the same sort of argument shows that the second term is
bounded by a constant multiple of é. So this proves (24.22) (first choose § then €)
and hence (24.20) under the assumption that f is continuous and vanishes outside
some interval [—R, R].

However, the general case follows by continuity since such continuous functions
vanishing outside compact sets are dense in L?(R) and both sides of (24.20) are
continuous in f € L*(R). O

Now, (24.22) certainly implies that the e; form an orthonormal basis, which is
what we wanted to show — but hard work! I did it really to remind you of how we
did the Fourier series computation of the same sort and to suggest that you might
like to compare the two arguments.





