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Lecture 26. THURSDAY, MAY 14:REVIEW

Now, there was one final request before I go through a quick review of what we
have done. Namely to state and prove the Hahn-Banach Theorem. This is about
extension of functionals. Stately starkly, the basic question is: Does a normed space
have any non-trivial continuous linear functionals on it? That is, is the dual space
always non-trivial (of course there is always the zero linear functional but that is
not very amusing). We did not really encounter this problem since for a Hilbert
space, or even a pre-Hilbert space, there is always the space itsefl, giving continuous
linear functionals through the pairing — Riesz’ Theorem says that in the case of a
Hilbert space that is all there is. I could have used the Hahn-Banach Theorem to
show that any normed space has a completion, but I gave a more direct argument
for this, which was in any case much more relevant for the cases of L!(R) and L?(R)
for which we wanted concrete completions.

Theorem 19 (Hahn-Banach). If M C V is a linear subspace of a normed space
and u : M — C is a linear map such that

(26.1) lu(t)| < Clltlly Vte M

then there exists a bounded linear functional U : V. — C with ||U|| < C and
Uy = u.

First, by computation, we show that we can extend any continuous linear func-
tional ‘a little bit’ without increasing the norm.

Lemma 20. Suppose M C V is a subspace of a normed linear space, x ¢ M
and u : M — C is a bounded linear functional as in (26.1) then there exists
u M ={t' e Vit' =t +ax, a € C such that

(26.2) W), =u, [v(t+azx)| < Cllt+axlly, Vte M, acC.

Proof. Note that the decompositon ¢’ = t + ax of a point in M’ is unique, since
t+ ar =t + ax implies (a — a)zr € M so a = a, since x ¢ M and hence t =t as
well. Thus

(26.3) u(t+ax) = u'(t) + au(x) = u(t) + Xa, A =u/(z)

and all we have at our disposal is the choice of A. Any choice will give a linear
functional extending u, the problem of course is to arrange the continuity estimate
without increasing the constant. In fact if C' = 0 then v = 0 and we can take
the zero extension. So we might as well assume that C' = 1 since dividing u by C
arranges this and if v’ extends u/C then Cu' extends u and the norm estimate in
(26.2) follows. So we are assuming that

(26.4) lu(®)] < [t ¥V t € M.
We want to choose A so that
(26.5) lu(t) + aA| < ||t +az||v Vte M, acC.

Certainly when a = 0 this represents no restriction on A. For a # 0 we can divide
through by a and (26.5) becomes

t t
(26.6) lallu(Z) = Al = Ju(t) + aAl < |t + azlly = alll > — 2lv
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and since t/a € M we only need to arrange that
(26.7) lu(t) = A < |t—z|lv YVue M

and the general case follows.
So, we will choose A to be real. A complex linear functional such as u can be
recovered from its real part, so set

(26.8) w(t) = Re(u(t)) V t € M

and just try to extend w to a real functional — it is not linear over the complex
numbers of course, just over the reals, but what we want is the anaogue of (26.7):

(26.9) w(t) =N < |[t—zly VteM

which does not involve linearity. What we know about w is the norm estimate
(26.4) which implies
(2610) fw(tr) — w(ts)] < Jults) — u(t2)] < [t — tall < 12 — llv + [t2 — 2]y
Writing this out usual the reality we find
(26.11) w(ty) —w(t2) < [[t1 — zllv + [tz — zlly =

w(ty) — ||t — z]] < w(te) + ||t2 — z|lv V t1, t2 € M.

We can then take the sup on the right and the inf on the left and choose A in
between — namely we have shown that there exists A € R with

(26.12) w(t) — ||t —z|lv < sup (w(t1) — ||t —z|)) < A
toe M

< 154 (w(tr) + 1t1 — z|]) < w(t)+ ||t —z|lv V¢ € M.
2

t

This in turn implies that

(26.13) —|It —z|lv < —wt) + A< ||t — 2|y = |wN| < —||t —z|v ¥Vt € M.
This is what we wanted — we have extended the real part of u to

(26.14) w' (t+ ax) = w(t) — (Rea)X and |w'(t + ax)| < ||t + ax||v.

Now, finally we get the extension of u itself by ‘complexifying’ — defining

(26.15) U (t+ax) = w'(t + ax) —iw'(i(t + ax)).

This is linear over the complex numbers since

(26.16) ' (2(t + ax)) = w'(2(t + ax)) — iw' (iz(t + ax)
=w'(Rez(t + ax) +iIm 2(t + az)) — iw' (i Re 2(t + az)) + iw’(Im 2(t + az))

= (Rez+ilmz2)w'(t + az) — i(Rez + iIm 2)(w'(i(t + ax)) = zu'(t + ax).

It certainly extends u from M — since the same identity gives u in terms of its real
part w.

Finally then, to see the norm estimate note that (as we did long ago) there exists
a unige 0 € [0, 27) such that
(26.17) [u'(t + azx)| = Reeu'(t + ax) = Rew' (et + e ax)

' = w'(e¥u+ e?ax) < || (t + ax)||y = ||t + az|v.

This completes the proof of the Lemma. O
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Of Hahn-Banach. This is an application of Zorn’s Lemma. I am not going to get
into the derivation of Zorn’s Lemma from the Axiom of Choice, but if you believe
the latter — and you are advised to do so, at least before lunchtime — you should
believe the former.

So, Zorn’s Lemma is a statement about partially ordered sets. A partial order
on a set E is a subset of E X E, so a relation, where the condition that (e, f) be in
the relation is written e < f and it must satisfy

(26.18) e<e,e<fand f<e=e=f e<fand f<g=—e<g.

So, the missing ingredient between this and an order is that two elements need not
be related at all, either way.

A subsets of a partially ordered set inherits the partial order and such a subset
is said to be a chain if each pair of its elements is related one way or the other.
An upper bound on a subset D C FE is an element e € E such that d < e for all
d € D. A mazimal element of E is one which is not majorized, that ise < f, f € E,
implies e = f.

Lemma 21 (Zorn). If every chain in a (non-empty) partially ordered set has an
upper bound then the set contains at least one mazximal element.

Now, we are given a functional v : M — C defined on some linear subspace
M C V of a normed space where u is bounded with respect to the induced norm on
M. We apply this to the set F consisting of all extensions (v, N) of u with the same
norm. That is, V O N D M must contain M, U|M =w and ||v||y = ||u|lar- This is
certainly non-empty since it contains (u, M) and has the natural partial order that
(v1,N1) < (v2, N2) if Ny C Ny and 1)2|N1 = v1. You can check that this is a partial
order.

Let C be a chain in this set of extensions. Thus for any two elements (v;, N7) € C,
either (vy, N1) < (v, N3) or the other way around. This means that

(26.19) N = J{N;(v,N) € C for some v} C V

is a linear space. Note that this union need not be countable, or anything like that,
but any two elements of N are each in one of the N’s and one of these must be
contained in the other by the chain condition. Thus each pair of elements of N is
actually in a common N and hence so is their linear span. Similarly we can define
an extension

(26.20) 7: N —C, o(z) =v(z)ifz € N, (v,N)eC.

There may be many pairs (v, N) satisfying © € N for a given = but the chain
condition implies that v(x) is the same for all of them. Thus ¢ is well defined, and
is clearly also linear, extends u and satisfies the norm condition |0(z) < ||ul|ar||v]|v-
Thus (7, ]\7) is an upper bound for the chain C.

So, the set of all extension E, with the norm condition, satisfies the hypothesis
of Zorn’s Lemma, so must — at least in the mornings — have an maximal element
(ﬂ,J\Z/) If M = V then we are done. However, in the contary case there exists
xeV\ M. This means we can apply our little lemma and construct an extension
(u', M) of (@, M) which is therefore also an element of E and satisfies (@, M) <
(u', M'). This however contradicts the condition that (@, M) be maximal, so is
forbidden by Zorn. (I



150 LECTURE NOTES FOR 18.102, SPRING 2009
There are many applications of Zorn’s Lemma, the main one being something
like this:-

Proposition 33. For any normed space V' and element x € V there is a continuous
linear functional f : V — C with f(x) =1 and ||f|| < ||z|v.

Proof. Start with the one-dimensional space, M, spanned by x and define u(zz) = 2.
This has norm ||z||y. Extend it and you will get an admissible functional f. O

Now, finally the review!





