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Lecture 3 

Generalizations of the Cauchy Integral Formula 

There are many, many ways to generalize this, but we will start with the most obvious 

Theorem. Let D ⊆ Cn be the polydisk D = n where Di : zi < Ri and let f ∈ O(D) ∩C∞(D) 
then for any point a = (a1, . . . , an) 

D1 × · · · ×D | |

� 
1 
�n � 

f(z1, . . . , zn)
f(a) = n

2πi (z1 − a1) . . . (zn − an) 
dz1 ∧ · · · ∧ dz

∂D1×···×∂Dn 

Proof. We will prove by induction, but only for the case n = 2, the rest follow easily. We do the Cauchy 
Integral formula in each variable separately 

1 
� 

f(z1, z2) 1 
� 

f(z1, z2)
f(z1, a2) = dz1 f(a1, zn) = dz2

2πi ∂D2 
z2 − z2 2πi ∂D2 

(z1 − a1) 

Then just plug the first into the second. 

Applications: First make the following changes ai   zi, zi   ηi, then 

� 
1 
�n � 

f(η)
f(z1, . . . , zn) = n

2πi (η1 − z1) . . . (ηn − zn) 
dη1 ∧ · · · ∧ dη

∂D1×···×∂Dn 

As before in the single variable case we make the following replacements 

1 1 1 1 zα 
�

(ηi − zi) η1 . . . ηn 

� 
zi η1 . . . ηn ηα1 − ηi α 

n we have uniform converge for z on compact subsets of D. So by the Lebesgue for η ∈ ∂D1 × · · · × ∂D
dominated convergence theorem 

f(η)αf(z) = 
� 

aαz aα = 

� 
1 
�n � 

ηα1+1 n+1 2πi . . . ηαn
dη1 ∧ · · · ∧ dη

nα 1 

Theorem. U open in Cn , f ∈ O(U), a ∈ U and D a polydisk centered at a with D ⊆ U then on D we have 

f(z) = 
� 

aα(z1 − a1)
α1 . . . (zn − an)

αn 

α 

(we will call this (∗) from now on)


Proof. Apply the previous little theorem to f(z − a).


1Note we can check by differentiation that the coefficients are aα = α!∂f/∂z
α(a). 

Theorem. U is a connected open set in Cn with f, g ∈ O(U). If f = g on an open subset V ⊂ U then f = g 
on all of U .


Proof. As in one dimension.


Theorem (Maximum Modulus Principle). U is a connected open set in Cn , f ∈ O(U). If |f | achieves

a local maximum at some point a ∈ U then f is constant 

Proof. Left as exercise. 

As a reminder: 



Theorem. Let g ∈ C0
∞(C) then if f is the function 

1 
� 

g(η)
f(z) = 

2πi C η − z
dη ∧ dη̄

then f ∈ C∞(C) and ∂f/∂z̄ = g. 

What about the n-dimensional case? That is, given hi ∈ C0
∞(Cn), i = 1, . . . , n does there exist f ∈

C∞(Cn) such that ∂f = hi, i = 1, . . . , n?∂z̄i 

There clearly can’t always be a solution because we have the integrability conditions 

∂hi ∂hj
= 

∂z̄j ∂z̄i 

Theorem (Multidimensional Inhomogeneous CR equation). If the hi’s satisfy these integrability 
conditions then there exists an f ∈ C∞(Cn) with ∂f/∂z̄i = hi. And in fact such a solution is given by 

1 
� 

h1(η1, z2, . . . , zn)
f(z1, . . . , zn) = 

2πi C (η1 − z1) 
dη1 ∧ dη̄1 

Proof. This just says for get about everything except the first variable. 
Clearly f ∈ C∞(Cn) and ∂f/∂z̄1 = h1. Now ∂f/∂z̄i we compute under the integral sign and we get 

∂ 1 
h1(η1, z2, . . . , zn)

ηi − zi 
∈ L′(η1)

∂z̄i 

(so it is legitimate to differentiate under the integral sign). Now 

∂f 
=

1 
� 
∂h1 

(η1, z2, . . . , zn) 
dη1 ∧ dη̄1 

∂z̄i 2πi ∂z̄j η1 − z1 
1 

= 

� 
∂hj 

(η1, z2, . . . , zn) 
dη1 ∧ dη̄1 

2πi ∂η1 η1 − z1 
= hj(z1, . . . , zn) 

The second set is by integrability conditions, and the lat is by the previous lemma. QED. 

Let K ⋐ Cn be a compact st. Suppose Cn −K is connected. Suppose hi ∈ C0
∞(Cn) are supported in K. 

Theorem. If f is the function (∗) then supp f ⊆ K(unique to higher dimension). So not only do we have

a solution to the ICR eqn, it is compactly supported.


Proof. By (∗) f(z1, . . . , zn) is identically 0 when (zi) ≫ 0, i > 1, because hi is compactly supported. Also,

since supphi ⊆ K and ∂f/∂z̄i = hi we have that ∂f/∂z̄i = 0 on Cn −K, so f ∈ O(Cn −K). The uniqueness 
of analytic continuation we have f ≡ 0 on Cn −K (used that Cn −K is connected) 

Theorem (Hartog’s Theorem). Let K ⋐ U , U ⊂ Cn is open and connected. Suppose that U − K 
is connected. Let f ∈ O(U − K) then f extends holomorphically to all of U . THIS IS A PROPERTY 
SPECIFIC TO HIGHER DIMENSIONAL SPACES. 

Proof. Let K1 ⋐ U so that K ⊂ Int K1, U −K1 is connected. Choose ϕ ∈ C∞(Cn) such that ϕ ≡ 1 on K 
and suppϕ ⊂ Int K1. Let �

(1 − ϕ)f on U −K 
v = 

0 on K 

then v ∈ C∞(U). And v ≡ f on U − K. hi = ∂ v, i = 1, . . . , n. One U − K1, v = so ∂z̄i 
f ∈ O(U − K1) 

∂ ∂hjhi = ∂¯ f on U −K1 and f is holomorphic, so this is 0, thus hi ∈ C0
∞(Cn), supphi ⊆ K1 and ∂hi = zi ∂¯ zjzj ∂¯ , 

so ∃w ∈ C0
∞(Cn) such that ∂w = hi and suppw ⊆ K1. Take g = v − w so w ≡ 0 on Cn − K, v = f on ∂z̄i 

Cn −K1, so g = f on Cn −K and by construction 

∂g ∂v ∂w ∂ 
= = hi −

∂z̄i ∂z̄i 
−
∂z̄i ∂z̄i 

w = 0 

and g = f on U − K1, f ∈ C∞(U − K), since U − K connected, by uniqueness of analytic so g ∈ O(U) 
continuation g = f on U −K, so g is holomorphic continuation of f onto all of U . 


