Lecture 4

Applying Hartog’s Theorem

Let X C C™ be an algebraic variety, code X = 2. And suppose f € O(C" — X). Then f extends holomor-
phically to f € O(C™).

Sketch of Proof: Cut X by a complex plane (P = C?) transversally. Then f |p€ O(P — {p}) so by
hartog, f |p€ O(P). Do this argument for all points, so f has to be holomorphic on f € O(C"™).

We have to be a little more careful to actually prove it, but this is just an example of how algebraic
geometers use this.

Dolbeault Complex and the ICR Equation
Let U be an open subset of C", w € Q(U), then we discussed how Q' (U) = Q10 ¢ Q01

There is a similar story for higher degree forms.
Taker > 1, p+qg=r. Then w € QP9(U) if w is in the following form

w = Zf],.]dzl Ndzy  frg € CT(U)

and dzy = dz;; A -+ Ndz;,, dzy = dz; A--- ANdzj, are standard multi-indices. Then
o= o
p+q=r

Now suppose we have w € QP9(U), w = > fr.ydzr A dZ; then the de Rham differential is written as follows

fI.]

dw =" "dfr; Ndzr Ndzy = o dzl/\dzj/\dZJ+Za dz; Ndzp A dzy

The first term we define to be dw and the second to be dw,i.c.

0
ow = fI’szi ANdzr Ndzy
5‘21-
- 0
Ow = ff’szj/\dzI/\dzJ
8zj

Now we may write dw = dw + 0w, and note that dw € QPY14(U) and dw € QP9TH(U).
Also

d2:0:82w+85w+%w+52w

and the terms in the above expression are of bidegree

r+2,9)+(+Lg+)+(@+1q+11(p,qg+2)

00 =8%=0and 99 4+ 00 =0, so 9,0 are anti-commutative.

We now have that the de Rham complex (Q*(U),d) is a bicomplex, i.e. d splits into two different
coboundary operators that anticommute.

The rows of the bicomplex are given by

%) %)

004q ObLa 024

and the columns are given by
0 —2>qp1 s gp2 2

For the moment, we focus on the columns, more specifically the extreme left column.



Definition. The Dolbeault Complex is the following complex

C®(U) = Q0 = QOO(U) —2 QOL(U) —2= O2(U) 2 ..

A basic problem in several complex variables is to answer the question: For what open sets U in C™ is
this complex exact?

Today we will show that the Dolbeault complex is locally exact (actually, we will prove something a little
stronger)

Theorem (1). Let U and V' be polydisks with V CU. Then if w € Q%4(U) and Ow = 0 then there exists
w € QY=Y (V) with Ou =w on V.

This just says that if we shrink the domain a little, the exactness holds.

To prove this theorem we will use a trick similar to showing that the real de Rham complex is locally
exact.

First, we define a new set

Definition. Q%9(U);, 0 < k < n is given by the following rule: w € Q%9(U), if and only if
W:fodzl dzr =dzi, N+ Ad%,, 1<ip < <ig<k

This is just a restriction on the z;’s that may be present. For example Q%4(U), = {0} and Q*(U),, =
Q%(U).
An important property of this space follows. If w € Q%9(U);, then

— 0
Ow = Z a—gdzl A dzr + QUL (D),
1>k

so if dw = 0 then 0f;/0% = 0, for [ > k i.e. f; is holomorphic.
Let V,U be polydisks, V C U. Choose a polydisk W so that V C W and W C U.

Theorem (2). If w € Q%9(U) and Ow = 0 then there exists f € Q"9 (W),_1 such that w — OB €
QO-,q(W)kil_

We claim that Theorem 2 implies Theorem 1 (left as exercise)
Before we prove theorem 2, we need a lemma

Lemma. (ICR in 1D) If g € C*°(U) with g—gl =0, |l > k then there exists f € C°°(W) such that g—gl =0
forl>k and(%fk:g.

Proof. U =U; x -+ x Uy, where U; are disks and W = Wy x - -- x W,, where W; are disks. Let p € C§°(Uy)

so that p = 1 on a neighborhood of W},. Replacing g by p(z1)g we can assume that g is compactly supported
in zp.

Choose f to be

fzi/g(zl,...,zk,l,n,z;ﬁq,...,zn)dn/\dﬁ
2mt Je n— 2k

We showed before that 2L = g. By a change of variable we see that
P

f:—i,/ g(zl,...,zk_lzk—n,zk+1,...,zn)dn/\dﬁ
2mi Je i
so f € C°°(W) and clearly g—gl =0,1>k. QED. O

We may now prove Theorem 2



Proof of Theorem 2. w € Q%4(U)y,, and Ow = 0. Write

w=p+dz Av € QYU U)pq1,v € QI HU)

(just decompose w) and say

v=> gidz, greC>®U), I=(i1,....iq1), s <k—1

Ow = 0 tells use that g—g =0, [ > k. By the lemma above, there exists fr € C§°(W) so that

%zg; and a—JEI:O,Z>I<:
Zk 0z

Take 8 =" frdz;, then

= 0

op = Zdzk A a—;:dzi + Qo’q(W)szl =dzp NV
sow— 0B € QW ),_;.

Theorem (3). Let U be a polydisk then the Dolbeault complex

QO’O(U) _5> Qo’l(U) _5> QO’Z(U) 5_> .

1s exact. That is, you don’t have to pass to sub-polydisks.

The above theorem is EXERCISE 1



