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Lecture 6


Review 

U open Cn . Make the convention that Ωr(U) = Ωr . We showed that Ωr = 
� 

p+q=r Ω
p,q , i.e. its bigraded. 

And we also saw that d = ∂ + ∂, so the coboundary operator breaks up into bigraded pieces. 

∂ : Ωp,q Ωp+1,q ∂ : Ωp,q Ωp,q+1 → → 
ω ∈ Ωr , µ ∈ Ωs . Then 

d(ω ∧ µ) = dω ∧ µ+ (−1)rω ∧ dµ 

there are analogous formulas for ∂, ∂ 

∂(ω ∧ µ) = ∂ω ∧ µ+ (−1)r ω ∧ ∂µ 

Because of bi-grading the de Rham complex breaks into subcomplexes 

∂ ∂
(1)q : Ω

0,q ∂ 
Ω1,q Ω2,q . . . 

∂ ∂
(2)p : Ω

p,0 ∂ 
Ωp,1 Ω0,2 . . . 

The Dolbeault complex is (2)0 : Ω
0,0 ∂ 

Ω0,1 .−→
Last week we showed that if U is a polydisk then the Dolbeault complex is acyclic. 



� 

I 

Theorem. If U is a polydisk then complex (1)q and (2)p are exact for all p, q.


Proof. Take I = (i1, . . . , ip), define Ωp,q := Ω0,q ∧ dzI . And ω ∈ Ωp,q if and only if ω = µ ∧ dzI , µ ∈ Ω0,q.
I I 
And 

∂(ω) = ∂(µ ∧ dzI ) = ∂µ ∧ dzI 

∂ 
Ωp,1 

∂
Therefore, if ω ∈ Ωp,q , then ∂ω ∈ Ωp,q+1 . We can get another complex, define (2)pI : Ω

p,0 . . . .I I → I −− →
Ωp,qNow the map µ ∈ Ω0,q 7→ µ∧dzI . This maps (2)0 bijectively onto (2)I . So (2) is acyclic. And Ωp,q = 

�
I 

implies that (2)p is acyclic. 
What about complex with ∂? 
Take ω ∈ Ωp,q , then 

ω = 
� 

fI,J dzI ∧ dz̄J fI,J ∈ C∞(U), I = p, J = q| | | |

Take complex conjugates 

zI ∧ dzJ ∈ Ωq,p ¯ω = 
� 

f̄I,J d¯ ∂ω = ∂¯¯ ω 

This map ω 7→ ω maps (1)p to (2)p so (2)p acyclic implies that (1)p is acyclic.¯

The Subcomplex (A, d) 

Another complex to consider. We look at the map Ωp,0 
¯

∂̄ 
Ωp,1 . Denote by Ap the kernel of this map,−→

ker{Ωp,0 ∂ 
Ωp,1 . Suppose µ ∈ Ap, ∂µ ∈ Ωp+1,0 , and we know that ∂∂µ = −∂∂µ = 0, so ∂µ ∈ Ap+1 .−→ }

Moreover, dµ = ∂µ + ∂µ = ∂µ, so we have a subcomplex (A, d) of (Ω, d), the de Rham complex 

d d d 
A0 �� A1 �� A2 �� . . . 

This complex has a fairly simple description. Suppose µ ∈ Ωp,0 , µ = 
�

fI dzI , and suppose further thatI =p| |
∂µ = 0, i.e. µ ∈ Ap. Then 

∂fI
∂µ = 

� ∂fI 
dz̄i ∧ dzI = 0 = 0 i = 1, . . . , n 

∂z̄i ∂z̄i 

so the fi are holomorphic. Because of this we have the following definition 

Definition. The complex (A∗, d) is called the Holomorphic de Rham complex. 

When is this complex acyclic? To answer this, we go back to the real de Rham complex. 

Reminder of Real de Rham Complex 

Consider the usual (real) de Rham complex. Let U be an open set in Rn . Then we know


Theorem (Poincare Lemma). If U is convex then (Ω∗(U), d) is exact.


Proof. U convex, and to make things simpler, let 0 ∈ U . Let ρ : U → U , ρ ≡ 0. Construct a homotopy

operator Q : Ωk(U) → Ωk−1(U), satisfying 

dQω + Qdω = ω − ρ∗ω 

for all ω ∈ Ω∗(U). The exactness follows trivially if we have this operator. Now, what is the operator? We 
define it the following way. 

If ω = 
� 
fI (x)dxI , fI ∈ C∞(U). Then 

Qω = 
�

(−1)r xir 

�� 1 

tk−1fI (tx)dt dxir 
dxi1 ∧ · · · ∧ � ∧ · · · ∧ dxik 

r,I 0 



� 

2nd Homework Problem The holomorphic version of this works. Let U ⊆ R2n ⊆ Cn , convex with 
0 ∈ U . Take ω = 

�
I =k fI dzI , fI ∈ O(U). Let Q be the same operator (but holomorphic version)| |

Qω = 
�

(−1)r zir 

�� 1 

tk−1fI (tz)dt dzir 
dzi1 ∧ · · · ∧ � ∧ · · · ∧ dzik 

r,I 0 

Show Q : Ak → Ak−1 and (dQ + Qd)ω = ω − ρ∗ω. Homework is to check that this all works. 

Theorem. U a polydisk. Then if ω ∈ Ω1,1(U) and is closed then there exists a C∞ function f so that 

ω = ∂∂f . (f is called the potential function of ω). 

This is an important lemma in Kaehler geometry, which we will use later. 

Proof. Just diagram chasing: 

∂ ∂1 i �� Ω0,1 �� Ω1,1 �� Ω2,1 �� . . .A �� �� ��

∂ ∂ ∂ 

∂ ∂0 i �� Ω0,0 �� Ω1,0 �� Ω2,0 �� . . .A �� �� ��

i i i 

i d d�� A0 �� A1 �� A2 �� . . .C 

let ω = ω1,1 ∈ Ω1,1 , dω = 0, so ∂ω = ∂ω = 0. ∂ω = 0 implies there is an a so that ω = ∂a, a ∈ Ω1,0 . We can 
find b ∈ A1 so that ∂a = ∂b. So ∂(a − b) = 0, and a − b = ∂c, where c ∈ Ω0,0 = C∞. Then ∂(a − b) = ∂∂c. 
Put ∂(a − b) = ∂a = ω. So ω = ∂∂c. 

Exercise (not to be handed in) ω ∈ Ωp,q(U). And dω = 0 then ω = ∂∂u, u ∈ Ωp−1,q−1 . 

Functoriality 

U open in Cn , V open in Ck . Coordinatized by (z1, . . . , zn), (w1, . . . , wk ). Let f : U V be a mapping, 
f = (f1, . . . , fk), fi : U C. f is holomorphic if each fi is holomorphic. 

→
→

Theorem. f is holomorphic iff f∗(Ω1,0(V ) ⊆ Ω1,0(U), i.e. for every ω ∈ Ω1,0(V ), f∗ω ∈ Ω1,0(U). 

Proof. Necessity. ω = dωi, then 
f∗ω = dfi = ∂fi + ∂fi ∈ Ω1,0(U) 

then ∂fi = 0, so fi ∈ O(U). 
Sufficiency. Check this. 

Corollary. f holomorphic. Then f∗Ωp,q (V ) ⊆ Ωp,q(U), also ω ∈ Ωp,q (V ), then f∗dω = df∗ω, which implies 
that f∗∂ω = ∂f∗ω, f∗∂ω = ∂f∗ω. 


